\({\color{Red}{欢迎到学科网下载资料学习 }}\)
[ 【基础过关系列】高一数学同步精品讲义与分层练习(人教A版2019)]
(https://www.zxxk.com/docpack/2921718.html)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)
必修第二册同步巩固,难度2颗星!
基础知识
二面角
(1) 定义
从一条直线出发的两个半平面所组成的图形叫做二面角.这条棱叫做二面角的棱,这两个半平面叫做二面角的面.
棱为\(AB\),面分别为\(\alpha\),\(\beta\)的二面角记作二面角\(\alpha-AB-\beta\).
在二面角的棱\(l\)上任取一点\(O\),以点\(O\)为垂足,在半平面\(\alpha\)和\(\beta\)内分别作垂直于棱l的射线\(OA\)和\(OB\),则射线\(OA\)和\(OB\)构成的\(∠AOB\)叫做二面角的平面角.
(2) 范围
二面角的平面角\(\alpha\)的取值范围是\(\left[0^{\circ}, 180^{\circ}\right]\).
【例】 在正方体\(ABCD-A' B' C' D'\)中,求二面角\(A-A' D'-B'\),二面角\(B-A' D'-B'\).
解 \(\because AA'\perp A'D'\),\(A'B'\perp A'D'\),\(\therefore\)二面角\(A-A' D'-B'\)为\(∠AA' B'=90^{\circ}\),
\(\because BA'\perp A'D'\),\(A'B'\perp A'D'\),\(\therefore\) 二面角\(B-A' D'-B'\)为\(∠BA' B'=45^{\circ}\).
面面垂直
(1) 定义
若二面角\(\alpha-l-\beta\)的平面角为\(90^{\circ}\),则\(\alpha\perp \beta\);
(2) 判定定理
如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.
\(\left.\begin{array}{r}
a \subset \alpha \\
a \perp \beta
\end{array}\right\} \Rightarrow \alpha \perp \beta
(线面垂直\Rightarrow面面垂直)\)
(3) 性质定理
两个平面垂直,如果一个平面内有一直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直.
解释
① 符合表示: \(\left.\begin{array}{c}
\alpha \perp \beta \\
\alpha \cap \beta=a \\
b \subset \beta \\
b \perp a
\end{array}\right\} \Rightarrow b \perp \alpha\)
② 证明
设\(b\)与\(a\)的交点为\(A\), 过点\(A\)在内作直线\(c\perp a\), 则直线\(b\),\(c\)所成的角就是二面角\(\alpha-a-\beta\)的平面角. 由\(\alpha\perp \beta\)知,\(b\perp c\). 又因为\(b\perp a\),\(a\)和\(c\)是\(\alpha\)内的两条相交直线, 所以\(b\perp \alpha\).
③ 该定理说明由面面垂直可以得到线面垂直;
④ 判断
(1) 如果平面\(\alpha\perp\)平面 \(\gamma\),平面\(\beta\perp\)平面\(\gamma\),\(\alpha∩\beta=l\),那么\(l\perp \gamma\) ( √ )
(2) 如果平面\(\alpha\perp\)平面\(\beta\),那么平面\(\alpha\)内一定存在直线平行于平面\(\beta\) ( √ )
(3) 如果平面\(\alpha\perp\)平面\(\beta\),过\(\alpha\)内任意一点作交线的垂线,那么此垂线必垂直于\(\beta\) ( × )
(4) 如果平面\(\alpha\)不垂直于平面\(\beta\),那么平面\(\alpha\)内一定不存在直线垂直于平面\(\beta\) ( √ )
基本方法
【题型1】 二面角
【典题1】 如图,在棱长为\(a\)的正方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(AC\)与\(BD\)相交于点\(O\).求二面角\(A_1-BD-A\)的正切值.
解析 连接\(A_1 O\),
在正方体中\(BD\perp\)平面\(A_1 ACC_1\),\(\therefore AO\perp BD\),\(A_1 O\perp BD\),
\(\therefore\)二面角\(A_1-BD-A\)的平面角为\(∠A_1 OA\),
由题中的条件求出:\(AO=\dfrac{\sqrt{2}}{2} a\),\(AA_1=a\),
\(\therefore \tan \angle A_1 O A=\dfrac{a}{\dfrac{\sqrt{2}}{2} a}=\sqrt{2}\),
所以二面角\(A_1-BD-A\)的正切值为\(\sqrt{2}\).
点拨 求二面角,一般思路是根据二面角定义出发,比如本题中的二面角\(A_1-BD-A\),
① 在\(BD\)上找到一点\(O\),证明\(A_1 O\perp BD\),\(AO\perp BD\)(若图中没有\(A_1 O\),\(AO\),则需要在两个面内作出\(BD\)的垂线),确定\(∠A_1 OA\)为所求的二面角的平面角;
② 确定含角\(∠A_1 OA\)的三角形\(A_1 OA\),利用解三角形的方法求出角\(∠A_1 OA\),常见的是正弦定理、余弦定理等.
【巩固练习】
1.在四棱锥\(P﹣ABCD\)中,底面\(ABCD\)是矩形,\(PA\perp\)底面\(ABCD\),且\(PA=AB\),\(AD=\sqrt{3} AB\),则二面角\(P-CD-B\)的大小为( )
A.\(75^{\circ}\) \(\qquad \qquad \qquad \qquad\) B.\(45^{\circ}\) \(\qquad \qquad \qquad \qquad\) C.\(60^{\circ}\) \(\qquad \qquad \qquad \qquad\) D.\(30^{\circ}\)
2.如图,正三棱柱\(ABC-A_1 B_1 C_1\)中,各棱长都相等,则二面角\(A_1-BC-A\)的平面角的正切值为( )
A.\(\dfrac{\sqrt{6}}{2}\) \(\qquad \qquad \qquad \qquad\) B.\(\sqrt{3}\) \(\qquad \qquad \qquad \qquad\) C.\(1\) \(\qquad \qquad \qquad \qquad\) D. \(\dfrac{2 \sqrt{3}}{3}\)
3.如图,矩形\(ABCD\)中,\(AB=4\),\(AD=2\),\(E\)为\(CD\)的中点,\(△ADE\)沿着\(AE\)向上翻折,使点\(D\)到\(D'\).若\(D'\)在平面\(ABCD\)上的投影\(H\)落在梯形\(ABCE\)内部(不含边界),设二面角\(D'-BC-E\)的大小为\(\alpha\),直线\(D'C\),\(D'B\)与平面\(ABC\)所成角分别为\(\beta\),\(\gamma\),则( )
A.\(\alpha<\beta<\gamma\) \(\qquad \qquad \qquad \qquad\) B.\(\beta<\alpha<\gamma\) \(\qquad \qquad \qquad \qquad\) C.\(\beta<\gamma <\alpha\) \(\qquad \qquad \qquad \qquad\) D.\(\gamma <\beta<\alpha\)
参考答案
-
答案 \(D\)
解析 因为\(PA\perp\)底面\(ABCD\),\(CD\subset\)平面\(ABCD\),所以\(PA\perp CD\),
又\(AD\perp CD\),\(PA\cap AD=A\),所以\(CD\perp\)平面\(PAD\),
因为\(PD\subset\)平面\(PAD\),则\(CD\perp PD\),
所以二面角\(P-CD-B\)的平面角为\(∠PDA\).
在\(Rt△PAD\)中,\(\tan \angle P D A=\dfrac{P A}{A D}=\dfrac{\sqrt{3}}{3}\),则\(∠PDA=30^{\circ}\).
故二面角\(P-CD-B\)的大小为\(30^{\circ}\).
故选:\(D\).
-
答案 \(D\)
解析 设棱长为\(a\),\(BC\)的中点为\(E\),连接\(A_1 E\),\(AE\),
由正三棱柱\(ABC-A_1 B_1 C_1\)中,各棱长都相等.可得\(A_1 E\perp BC\),\(AE\perp BC\),
所以二面角\(A_1-BC-A\)的平面角为:\(∠A_1 EA\),
在\(RT△ABC\)中,\(AE=\dfrac{\sqrt{3}}{2} a\),
所以\(\tan \angle A_1 E A=\dfrac{A A 1}{A E}=\dfrac{a}{\dfrac{\sqrt{3}}{2} a}=\dfrac{2 \sqrt{3}}{3}\).
即二面角\(A_1-BC-A\)的平面角的正切值为\(\dfrac{2 \sqrt{3}}{3}\),
故选:\(D\).
-
答案 \(C\)
解析 由\(AB=2AD=4\)可知,\(DE=DA\),作\(AB\)中点\(P\),则\(DP\perp AE\),
故\(H\)在线段\(DP\)上,作\(D'M\perp BC\)交\(BC\)于\(M\),连接\(HM\),\(HB\),\(HC\),如图,
易知\(\tan\alpha=\dfrac{D^{\prime} H}{H M}\), \(\tan \beta=\dfrac{D^{\prime} H}{H C}\), \(\tan \gamma=\dfrac{D^{\prime} H}{H B}\),
又\(HM<HB<HC\),\(\therefore \beta<\gamma <\alpha\).
故选:\(C\).
【题型2】 面面垂直的判定
【典题1】 如图,\(P\)是矩形\(ABCD\)所在平面外一点,\(PA\perp\)平面\(ABCD\),\(E\),\(F\)分别是\(AB\),\(PD\)的中点,又二面角\(P-CD-B\)为\(45^{\circ}\).
(1)求证:\(AF∥\)平面\(PEC\); (2)求证:平面\(PEC\perp\) 平面\(PCD\).
证明 (1)取\(PC\)的中点\(G\);连接\(EG\),\(FG\).
\(\because E\),\(F\)分别是\(AB\),\(PD\)的中点,
\(\therefore FG∥CD\),\(FG=\dfrac{1}{2} CD\), \(AE∥CD\),\(AE=\dfrac{1}{2} CD\),
\(\therefore AE∥FG\)且\(AE=FG\),
\(\therefore\)四边形\(AEGF\)是平行四边形,\(\therefore AF∥EG\).
又\(AF \not \subset\)平面\(PEC\),\(EG\subset\)平面\(PEC\),\(\therefore AF∥\)平面\(PEC\).
(2)\(\because PA\perp\)平面\(ABCD\),\(\therefore PA\perp CD\).
又\(\because CD\perp AD\),且\(PA\cap AD=A\),\(\therefore CD\perp\)平面\(PAD\).
\(\therefore CD\perp AF\),\(CD\perp PD\).
\(\therefore ∠PDA\)是二面角\(P-CD-B\)的平面角,即\(∠PDA=45^{\circ}\).
又\(\because PA\perp AD\),\(F\)是\(PD\)中点,\(\therefore AF\perp PD\).
\(\because PD\cap CD=D\),\(\therefore AF\perp\)平面\(PCD\).
\(\because AF∥EG\),\(\therefore EG\perp\) 平面\(PCD\).
\(\because EG\subset\)平面\(PEC\),
\(\therefore\)平面\(PEC\perp\)平面\(PCD\).
点拨 灵活运用线面垂直的判定与性质、面面垂直的判定与性质,理解线线垂直、线面垂直、面面垂直之间的转化.
【巩固练习】
1.对于不重合的直线\(m\),\(l\)和平面\(\alpha\),\(\beta\),要证\(\alpha\perp \beta\)需具备的条件是( )
A.\(m\perp l\),\(m∥\alpha\),\(l∥\beta\) \(\qquad \qquad \qquad \qquad\) B.\(m\perp l\),\(\alpha\cap \beta=m\),\(l\subset\alpha\)
C.\(m∥l\),\(m\perp \alpha\),\(l\perp \beta\) \(\qquad \qquad \qquad \qquad\) D.\(m∥l\),\(l\perp \beta\),\(m\subset\alpha\)
2.\(PA\)垂直于正方形\(ABCD\)所在平面,连接\(PB\),\(PC\),\(PD\),\(AC\),\(BD\),则下列垂直关系正确的是( )
①面\(PAB\perp\)面\(PBC\) \(\qquad \qquad \qquad \qquad\) ②面\(PAB\perp\)面\(PAD\)
③面\(PAB\perp\)面\(PCD\) \(\qquad \qquad \qquad \qquad\) ④面\(PAB\perp\)面\(PAC\).
A.①② \(\qquad \qquad \qquad \qquad\) B.①③ \(\qquad \qquad \qquad \qquad\) C.②③ \(\qquad \qquad \qquad \qquad\) D.②④
3.如图,在直三棱柱\(ABC-A_1 B_1 C_1\)中,\(D\),\(E\)分别为\(AB\),\(BC\)的中点,点\(F\)在侧棱\(B_1 B\)上,且\(B_1 D\perp A_1 F\),\(A_1 C_1\perp A_1 B_1\).求证:
(1)直线\(DE∥\)平面\(A_1 C_1 F\); \(\qquad \qquad\) (2)平面\(B_1 DE\perp\)平面\(A_1 C_1 F\).
4.如图,三棱柱\(ABC-A_1 B_1 C_1\)中,侧面\(BCC_1 B_1\)为矩形,\(ABB_1 A_1\)是边长为\(2\)的菱形,\(BC=1\),\(AC=\sqrt{5}\),
(1)证明:平面\(A_1 BC\perp\)平面\(ABB_1 A_1\);
(2)若\(AC=A_1 C\),求三棱柱\(ABC-A_1 B_1 C_1\)的体积.
参考答案
-
答案 \(D\)
解析 对于\(A\),如图\(1\),可得面\(\alpha\)、\(\beta\)不一定垂直,故错
对于\(B\),如图\(2\),可得面\(\alpha\)、\(\beta\)不一定垂直,故错
对于\(C\),\(m∥l\),\(m\perp \alpha\),\(l\perp \beta⇒\alpha∥\beta\),故错;
对于\(D\),有\(m∥l\),\(l\perp \beta\),\(⇒m\perp \beta\),
又\(\because m\subset\alpha\),\(⇒\alpha\perp \beta\),故正确;
故选:\(D\). -
答案 \(A\)
解析 由于\(BC\perp AB\),由\(PA\)垂直于正方形\(ABCD\)所在平面,
所以\(BC\perp PA\),
易证\(BC\perp\)平面\(PAB\),则平面\(PAB\perp\)平面\(PBC\);
又\(AD∥BC\),故\(AD\perp\)平面\(PAB\),
则平面\(PAD\perp\)平面\(PAB\).
故选\(A\). -
证明 (1)\(\because D\),\(E\)分别为\(AB\),\(BC\)的中点,\(\therefore DE\)为\(△ABC\)的中位线,
\(\therefore DE∥AC\),
\(\because ABC-A_1 B_1 C_1\)为棱柱,
\(\therefore AC∥A_1 C_1\),\(\therefore DE∥A_1 C_1\),
\(\because A_1 C_1\subset\)平面\(A_1 C_1 F\),且\(DE \not \subset\)平面\(A_1 C_1 F\),
\(\therefore DE∥A_1 C_1 F\);
(2) \(\because ABC-A_1 B_1 C_1\)为直棱柱,
\(\therefore AA_1\perp\)平面\(A_1 B_1 C_1\),
\(\therefore AA_1\perp A_1 C_1\),
又\(\because A_1 C_1\perp A_1 B_1\),且\(A A_1 \cap A_1 B_1=A_1\),\(AA_1\) 、\(A_1 B_1\subset\)平面\(AA_1 B_1 B\),
\(\therefore A_1 C_1\perp\)平面\(AA_1 B_1 B\),
\(\because DE∥A_1 C_1\),\(\therefore DE\perp\)平面\(AA_1 B_1 B\),
又\(\because A_1 F\subset\)平面\(AA_1 B_1 B\),\(\therefore DE\perp A_1 F\),
又\(\because A_1 F\perp B_1D\),\(DE\cap B_1 D=D\),且\(DE\)、\(B_1 D\subset\)平面\(B_1 DE\),
\(\therefore A_1 F\perp\)平面\(B_1 DE\),
又\(\because A_1 F\subset\)平面\(A_1 C_1 F\),
\(\therefore\)平面\(B_1 DE\perp\)平面\(A_1 C_1 F\). -
答案 (1) 略;(2) \(\sqrt{3}\)
解析 (1)证明:因为侧面\(BCC_1 B_1\)是矩形,所以\(BC\perp BB_1\),
又因为\(BC=1\),\(AB=2\),\(AC=\sqrt{5}\),
所以 \(B C^2+A B^2=A C^2\),
所以\(BC\perp AB\),又\(AB\cap BB_1=B\),
所以\(BC\perp\)平面\(ABB_1 A_1\),
又因为\(BC\subset\)平面\(A_1 BC\),
所以平面\(A_1 BC\perp\)平面\(ABB_1 A_1\);
(2)解:取\(AA_1\)的中点\(M\),连接\(CM\),\(BM\),
因为\(AC=A_1 C\),所以\(CM\perp AA_1\),
又因为\(CB\perp\)平面\(ABB_1 A_1\),所以\(BM\perp AA_1\),
且\(CM\cap BM=M\),所以\(AA_1\perp\)平面\(BCM\);
因为 \(C M=\sqrt{A C^2-A M^2}=\sqrt{5-1^2}=2\),
所以 \(B M=\sqrt{M C^2-B C^2}=\sqrt{4-1}=\sqrt{3}\),
所以三棱柱\(ABC-A_1 B_1 C_1\)的体积为:
\(V=S_{\triangle B C M} \cdot A A_1=\dfrac{1}{2} \cdot B M \cdot B C \cdot A A_1=\dfrac{1}{2} \times \sqrt{3} \times 1 \times 2=\sqrt{3}\).
【题型3】面面垂直的性质
【典题1】如图,\(P\)是四边形\(ABCD\)所在平面外的一点,四边形\(ABCD\)是\(∠DAB=60^{\circ}\)且边长为\(a\)的菱形,侧面\(PAD\)为正三角形,其所在平面垂直于底面\(ABCD\).若\(G\)为\(AD\)的中点,
求证:(1)\(BG\perp\)平面\(PAD\);\(\qquad \qquad\) (2)\(AD\perp PB\).
证明 (1)连接\(BD\),在菱形\(ABCD\)中,\(∠DAB=60^{\circ}\),
\(\therefore △ABD\)为正三角形.
又\(G\)为\(AD\)的中点,\(\therefore BG\perp AD\).
又平面\(PAD\perp\)平面\(ABCD\),平面\(PAD\cap\)平面\(ABCD=AD\),\(BG\subset\)平面\(ABCD\),
\(\therefore BG\perp\)平面\(PAD\).
(2)\(\because △ PAD\)为正三角形,\(G\)为\(AD\)的中点,
\(\therefore PG\perp AD\).
由(1)知\(BG\perp AD\),
又\(BG\cap PG=G\),
\(\therefore AD\perp\)平面\(PBG\).
\(\therefore AD\perp PB\).
【巩固练习】
1.平面\(\alpha\perp\) 平面\(\beta\),直线\(a∥\alpha\),则( )
A.\(a\perp \beta\) \(\qquad \qquad \qquad \qquad\) B. \(a∥\beta\) \(\qquad \qquad \qquad \qquad\) C.\(a\)与\(\beta\)相交 \(\qquad \qquad \qquad \qquad\) D.以上都有可能
2.如图所示,平面四边形\(ABCD\)中,\(AB=AD\),\(AB\perp AD\),\(BD\perp CD\),将其沿对角线\(BD\)折成四面体\(A-BCD\),使平面\(ABD\perp\)平面\(BCD\),则下列说法中不正确的是( )
①平面\(ACD\perp\)平面\(ABD\) \(\qquad \qquad\) ②\(AB\perp AC\) \(\qquad \qquad\) ③平面\(ABC\perp\)平面\(ACD\)
A.①② \(\qquad \qquad \qquad \qquad\) B.②③ \(\qquad \qquad \qquad \qquad\) C.①③ \(\qquad \qquad \qquad \qquad\) D.①②③
3.在四面体\(ABCD\)中,平面\(ABC\perp\)平面\(BCD\),\(AB=AC=4\),\(BC=CD=BD=2\),则\(AD=\)( )
A. \(3\sqrt{2}\) \(\qquad \qquad \qquad \qquad\) B. \(2\sqrt{3}\) \(\qquad \qquad \qquad \qquad\) C.\(4\) \(\qquad \qquad \qquad \qquad\) D. \(2\sqrt{5}\)
4.在正方形\(ABCD\)中,\(O\)为\(BD\)中点,将平面\(ABD\)沿对角线\(BD\)翻折,使得平面\(ABD\perp\)平面\(BCD\),则直线\(AB\)与\(CD\)所成角为\(\underline{\quad \quad}\)
.
5.如图,平面\(\alpha\perp\) 平面\(\beta\),\(A\in \alpha\),\(B\in \beta\),\(AB\)与两平面\(\alpha\)、\(\beta\)所成的角分别为\(\dfrac{\pi}{4}\)和\(\dfrac{\pi}{6}\).过\(A\)、\(B\)分别作两平面交线的垂线,垂足为\(A'\)、\(B'\),则\(AB:A'B'=\) \(\underline{\quad \quad}\)
.
参考答案
-
答案 \(D\)
解析 在正方体中设平面\(ABCD\)为\(\alpha\),平面\(ADD_1 A_1\)为\(\beta\),
\(A_1 B_1∥\)平面\(\alpha\),\(A_1 B_1\perp\)平面\(\beta\),\(A\)、\(C\)正确;
\(B_1 C_1∥\)平面\(\alpha\),\(B_1 C_1∥\)平面\(\beta\),\(B\)正确;
故选:\(D\).
-
答案 \(D\)
解析 \(\because BD\perp CD\),平面\(ABD\perp\)平面\(BCD\),
\(\therefore CD\perp\)平面\(ABD\),
\(\because CD\subset\)平面\(ACD\),\(\therefore\)平面\(ACD\perp\)平面\(ABD\),故①正确;
\(\because CD\perp\)平面\(ABD\),\(\therefore AB\perp CD\),
\(\because AB\perp AD\),
又\(AD\cap CD=D\),\(\therefore AB\perp\)平面\(ACD\),
\(\because CA\subset\)平面\(ACD\),\(\therefore AB\perp AC\),故②正确;
\(\because AB\perp\)平面\(ACD\),\(AB\subset\)平面\(ABC\),
\(\therefore\)平面\(ABC\perp\)平面\(ACD\),故③正确.
故选:\(D\). -
答案 \(A\)
解析 如图,设\(BC\)的中点为\(O\),连接\(AO\),\(DO\),
因为\(AB=AC=4\),\(BC=CD=BD=2\),
故\(AO\perp BC\),\(DO\perp BC\),
即\(∠AOD\)为二面角\(A-BC-D\)的平面角,
因为平面\(ABC\perp\)平面\(BCD\),故\(∠AOD=90^{\circ}\),
又 \(A O=\sqrt{A B^2-B O^2}=\sqrt{16-1}=\sqrt{15}\),\(O D=2 \times \dfrac{\sqrt{3}}{2}=\sqrt{3}\),
故 \(A D=\sqrt{A O^2+O D^2}=\sqrt{15+3}=3 \sqrt{2}\).
故选:\(A\). -
答案 \(60^{\circ}\)
解析 过\(B\),\(D\)作\(BE∥CD\),\(DE∥CB\),且\(BE\),\(DE\)交于\(E\),连接\(AE\),\(OE\),
直线\(AB\)与\(CD\)所成角即为\(∠ABE\)或其补角,
若正方体\(ABCD\)边长为\(2\),则\(BE=AB=AD=2\),
而\(AO\perp BD\),而\(ABD\perp\)面\(BCD\),\(AO\subset\)面\(ABD\),面\(ABD\cap\)面\(BCD=BD\),
\(\therefore AO\perp\)面\(BCD\),
而\(OE\subset\)面\(BCD\),即\(AO\perp OE\),且\(AO=OE=\sqrt{2}\),
\(\therefore AE=2\),则\(△ABE\)是等边三角形,故\(∠ABE=60^{\circ}\). -
答案 \(2:1\)
解析 连接\(AB'\)和\(A'B\),
设\(AB=a\),可得\(AB\)与平面\(\alpha\)所成的角为 \(\angle B A B^{\prime}=\dfrac{\pi}{4}\),
在\(Rt△BAB'\)中有\(AB'=\dfrac{\sqrt{2}}{2} a\),
同理可得\(AB\)与平面\(\beta\)所成的角为 \(\angle A B A^{\prime}=\dfrac{\pi}{6}\),
所以\(A'A=\dfrac{1}{2} a\),
因此在\(Rt△AA'B'\)中 \(A^{\prime} B^{\prime}=\sqrt{\left(\dfrac{\sqrt{2}}{2} a\right)^2-\left(\dfrac{1}{2} a\right)^2}=\dfrac{1}{2} a\),
所以\(AB:A' B'=a:\dfrac{1}{2} a=2:1\).
分层练习
【A组---基础题】
1.如图,已知四棱锥\(P-ABCD\)中,已知\(PA\perp\)底面\(ABCD\),且底面\(ABCD\)为矩形,则下列结论中错误的是( )
A.平面\(PAB\perp\)平面\(PAD\) \(\qquad \qquad \qquad \qquad\) B.平面\(PAB\perp\)平面\(PBC\)
C.平面\(PBC\perp\)平面\(PCD\) \(\qquad \qquad \qquad \qquad\) D.平面\(PCD\perp\)平面\(PAD\)
2.正方体\(ABCD-A_1 B_1 C_1 D_1\)中,二面角\(B-AC-B_1\)的平面角的余弦值为( )
A. \(\dfrac{\sqrt{6}}{3}\) \(\qquad \qquad \qquad \qquad\) B.\(\dfrac{\sqrt{3}}{2}\) \(\qquad \qquad \qquad \qquad\) C.\(\dfrac{1}{2}\) \(\qquad \qquad \qquad \qquad\) D.\(\dfrac{\sqrt{3}}{3}\)
3.如图,在四形边\(ABCD\)中,\(AD∥BC\),\(AD=AB\),\(∠BCD=45^{\circ}\),\(∠BAD=90^{\circ}\).将\(△ADB\)沿\(BD\)折起,使\(CD\perp\)平面\(ABD\),构成三棱锥\(A-BCD\).则在三棱锥\(A-BCD\)中,下列结论正确的是( )
A.\(AD\perp\)平面\(BCD\) \(\qquad \qquad \qquad \qquad\) B.\(AB\perp\)平面\(BCD\)
C.平面\(BCD\perp\)平面\(ABC\) \(\qquad \qquad \qquad \qquad\) D.平面\(ADC\perp\)平面\(ABC\)
4.如图所示,三棱锥\(P-ABC\)的底面在平面\(\alpha\)内,且\(AC\perp PC\),平面\(PAC\perp\)平面,点\(P\),\(A\),\(B\)是定点,则动点\(C\)的轨迹是( )
A.一条线段 \(\qquad \qquad \qquad\) B.一条直线 \(\qquad \qquad \qquad\) C.一个圆 \(\qquad \qquad \qquad\) D.一个圆,但要去掉两个点
5.如图,已知平面\(\alpha\perp\) 平面\(\beta\),\(\alpha\cap \beta=l\),\(A\in l\),\(B\in l\),\(AC\subset\alpha\),\(BD\subset\beta\),\(AC\perp l\),\(BD\perp l\),且\(AB=4\),\(AC=3\),\(BD=12\),则\(CD\)等于( )
A.\(8\) \(\qquad \qquad \qquad \qquad\) B.\(10\) \(\qquad \qquad \qquad \qquad\) C.\(13\) \(\qquad \qquad \qquad \qquad\) D.\(16\)
6.如图所示,在四棱锥\(P-ABCD\)中,底面\(ABCD\)是菱形,侧面\(PAD\)是等边三角形,且平面\(PAD\perp\)平面\(ABCD\),\(E\)为棱\(PC\)上一点,若平面\(EBD\perp\)平面\(ABCD\),则\(\dfrac{P E}{E C}=\)\(\underline{\quad \quad}\) .
7.如图所示,\(A\),\(B\),\(C\),\(D\)为空间四点,在\(△ABC\)中,\(AB=2\),\(AC=BC=\sqrt{2}\),等边三角形\(ADB\)以\(AB\)所在直线为轴旋转,当平面\(ADB\perp\)平面\(ABC\)时,\(CD=\)\(\underline{\quad \quad}\)
.
8.如图,四面体\(P-ABC\)中,\(PA=PB=13cm\),平面\(PAB\perp\)平面\(ABC\),\(∠ACB=90^{\circ}\),\(AC=8cm\),\(BC=6cm\),则\(PC=\) \(\underline{\quad \quad}\)
.
9.如图,三棱锥\(S-ABC\)中,棱\(SA\),\(SB\),\(SC\)两两垂直,且\(SA=SB=SC\),则二面角\(A-BC-S\)大小的正切值为\(\underline{\quad \quad}\)
.
10.如图,已知\(PA\)垂直于圆\(O\)所在的平面,\(AB\)是圆\(O\)的直径,点\(C\)是圆\(O\)上任意一点,过\(A\)作\(AE\perp PC\)于\(E\),\(AF\perp PB\)于\(F\),
求证:(1)\(AE\perp\)平面\(PBC\);\(\qquad \qquad\) (2)平面\(PAC\perp\)平面\(PBC\); (3)\(PB\perp EF\).
11.如图(1),四边形\(ABCD\)中,\(AD∥BC\),\(AD=AB\),\(∠BCD=45^{\circ}\),\(∠BAD=90^{\circ}\),将\(△ABD\)沿对角线\(BD\)折起,记折起后点\(A\)的位置为\(P\),且使平面\(PBD\perp\) 平面\(BCD\),如图(2).
(1)求证:平面\(PBC\perp\)平面\(PDC\);
(2)在折叠前的四边形\(ABCD\)中,作\(AE\perp BD\)于\(E\),过\(E\)作\(EF\perp BC\)于\(F\),求折起后的图形中\(∠PFE\)的正切值.
参考答案
-
答案 \(C\)
解析 对于\(A\),因为已知\(PA\perp\)底面\(ABCD\),且底面\(ABCD\)为矩形,
所以\(PA\perp AB\),又\(AB\perp AD\),\(AB\perp\)平面\(PAD\),
所以平面\(PAB\perp\)平面\(PAD\),故\(A\)正确;
对于\(B\),已知\(PA\perp\)底面\(ABCD\),且底面\(ABCD\)为矩形,
所以\(PA\perp BC\),又\(BC\perp AB\),所以\(BC\perp\)平面\(PAB\),
所以平面\(PAB\perp\)平面\(PBC\),故\(B\)正确;
对于\(D\),已知\(PA\perp\)底面\(ABCD\),且底面\(ABCD\)为矩形,
所以\(PA\perp CD\),又\(CD\perp AD\),
所以\(CD\perp\)平面\(PAD\),故\(D\)正确;
故选\(C\). -
答案 \(D\)
解析 连接\(BD\),\(AC\),记交点为\(O\),连接\(B_1 O\),
则\(BO\perp AC\),\(B_1 O\perp AC\),
则\(∠B_1 OB\)是二面角\(B-AC-B_1\)的平面角,
不妨设正方体的棱长为\(1\),则\(OB=\dfrac{\sqrt{2}}{2}\),
所以\(O B_1=\sqrt{O B^2+B_1^2}=\sqrt{\left(\dfrac{\sqrt{2}}{2}\right)^2+1^2}=\dfrac{\sqrt{6}}{2}\),
所以\(\cos \angle B O B_1=\dfrac{O B}{O B_1}=\dfrac{\dfrac{\sqrt{2}}{2}}{\dfrac{\sqrt{6}}{2}}=\dfrac{\sqrt{3}}{3}\),
故选:\(D\).
-
答案 \(D\)
解析 \(\because\)在四边形\(ABCD\)中,\(AD∥BC\),\(AD=AB\),\(∠BCD=45^{\circ}\),\(∠BAD=90^{\circ}\),
\(\therefore BD\perp CD\),
又平面\(ABD\perp\)平面\(BCD\),且平面\(ABD\cap\)平面\(BCD=BD\),
故\(CD\perp\)平面\(ABD\),则\(CD\perp AB\),又\(AD\perp AB\),
故\(AB\perp\)平面\(ADC\),所以平面\(ABC\perp\)平面\(ADC\).
故选\(D\). -
答案 \(D\)
解析 \(\because\)平面\(PAC\perp\)平面\(PBC\),平面\(PAC\cap\)平面\(PBC=PC\),\(AC\subset\)面\(PAC\),且\(AC\perp PC\),
\(\therefore AC\perp\)面\(PBC\),
而\(BC\subset\)面\(PBC\),\(\therefore AC\perp BC\),
\(\therefore\)点\(C\)在以\(AB\)为直径的圆上,
\(\therefore\)点\(C\)的轨迹是一个圆,但是要去掉\(A\)和\(B\)两点.
故选:\(D\). -
答案 \(C\)
解析 连接\(BC\),\(\because AC\perp l\),\(\therefore △ACB\)为直角三角形,
\(\therefore B C=\sqrt{A B^2+A C^2}=\sqrt{9+16}=5\),
又\(\because BD\perp l\),\(BD\subset\beta\),\(\alpha\cap \beta=l\),\(\alpha\perp \beta\),
\(\therefore BD\perp \alpha\),\(\therefore BD\perp BC\).
在\(Rt△DBC\)中, \(C D=\sqrt{B D^2+B C^2}=\sqrt{144+25}=13\).
故选:\(C\).
-
答案 \(\dfrac{1}{2}\)
解析 取\(AD\)的中点\(O\),连接\(OC\)交\(BD\)于\(F\)点,连结\(EF\),
\(\because OD∥BC\),\(BC=2OD\),\(\therefore FC=2OF\).
\(\because\)平面\(PAD\perp\)平面\(ABCD\),\(PO\perp AD\),
\(\therefore PO\perp\)平面\(ABCD\),
又\(\because\)平面\(BDE\perp\)平面\(ABCD\),
\(\therefore OP∥EF\),\(\therefore \dfrac{P E}{E C}=\dfrac{O F}{F C}=\dfrac{1}{2}\).
故答案为: \(\dfrac{1}{2}\).
-
答案 \(2\)
解析 如图,取\(AB\)的中点\(E\),连接\(DE\),\(CE\),
\(\because BC=CD\),\(\therefore CE\perp AB\),
又平面\(ADB\perp\)平面\(ABC\),且平面\(ADB\cap\) 平面\(ABC=AB\),\(CE\subset\)平面\(ABC\),
\(\therefore CE\perp\)平面\(ADB\),则\(CE\perp DE\),
\(\because AB=2\),\(AC=BC=\sqrt{2}\),
\(\therefore A C^2+B C^2=A B^2\),则\(AC\perp BC\),可得\(CE=1\),
在等边三角形\(ADB\)中,由\(AB=2\),求得\(DE=\sqrt{3}\),
在\(Rt△DEC\)中,有\(D C=\sqrt{D E^2+E C^2}=\sqrt{3+1}=2\).
故答案为:\(2\). -
答案 \(13cm\)
解析 取\(AB\)中点\(E\),连接\(PE\),\(EC\),
\(\because ∠ACB=90^{\circ}\),\(AC=8cm\),\(BC=6cm\),
\(\therefore AB=10cm\),\(\therefore CE=5cm\),
\(\because PA=PB=13cm\),\(E\)是\(AB\)中点,\(\therefore PE=12cm\),\(PE\perp AB\)
\(\because\)平面\(PAB\perp\)平面\(ABC\),平面\(PAB\cap\)平面\(ABC=AB\),
\(\therefore PE\perp\)平面\(ABC\),
\(\because CE\subset\)平面\(ABC\),\(\therefore PE\perp CE\),
在直角\(△PEC\)中, \(P C=\sqrt{P E^2+C E^2}=13 \mathrm{~cm}\),
故答案为:\(13cm\). -
答案 \(\sqrt{2}\)
解析 \(\because\)三棱锥\(S-ABC\)中,棱\(SA\),\(SB\),\(SC\)两两垂直,且\(SA=SB=SC\),
\(\therefore SA\perp\)平面\(SBC\),且\(A B=A C=\sqrt{S A^2+S B^2}\),
取\(BC\)的中点\(D\),连接\(SD\),\(AD\),
则\(SD\perp BC\),\(AD\perp BC\),
则\(∠ADS\)是二面角\(A-BC-S\)的平面角,
设且\(SA=SB=SC=1\),则\(SD=\dfrac{\sqrt{2}}{2}\),
则\(\tan \angle A D S=\dfrac{S A}{S D}=\dfrac{1}{\dfrac{\sqrt{2}}{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\).
-
证明 (1) \(\because PA\perp\)面\(ABC\),\(\therefore PA\perp BC\),
\(\because AB\)是直径,\(\therefore AC\perp BC\),
又\(\because PA\cap AC=A\) , \(\therefore BC\perp\)面\(PAC\),
\(\therefore BC\perp AE\),
又\(\because AE\perp PC\),\(BC\cap PC=C\),
\(\therefore AE\perp\)平面\(PBC\);
(2)由(1)可知\(BC\perp\)面\(PAC\),
又\(\because BC\subset\)平面\(PBC\), \(\therefore\)平面\(PAC\perp\) 平面\(PBC\);
(3)由(1)知\(AE\perp\) 平面\(PBC\),\(\therefore BP\perp AE\),
又\(\because AF\perp PB\),\(AF\cap AE=A\),\(\therefore PB\perp\)面\(AEF\),
\(\therefore PB\perp EF\). -
答案 (1) 略;(2)\(\sqrt{2}\)
解析 (1)证明:折叠前,在四边形\(ABCD\)中,\(AD∥BC\),\(AD=AB\),\(∠BAD=90^{\circ}\),
\(\therefore △ABD\)为等腰直角三角形.
又\(\because ∠BCD=45^{\circ}\),\(∠DBC=45^{\circ}\),\(\therefore ∠BDC=90^{\circ}\).
折叠后,\(\because\)平面\(BCD\perp\)平面\(PBD\),\(CD\perp BD\),
\(\therefore CD\perp\)平面\(PBD\).
又\(\because PB\subset\)平面\(PBD\),\(\therefore CD\perp PB\).
又\(PB\perp PD\),\(PD\cap CD=D\),
\(\therefore PB\perp\)平面\(PDC\).又\(PB\subset\)平面\(PBC\),
\(\therefore\)平面\(PBC\perp\)平面\(PDC\).
(2)\(\because AE\perp BD\),\(EF\perp BC\),折叠后的位置关系不变,
\(\therefore PE\perp BD\).
又平面\(PBD\perp\)平面\(BCD\),\(\therefore PE\perp\)平面\(BCD\),
\(\therefore PE\perp EF\).
设\(AB=AD=a\),则\(BD=\sqrt{2}a\),
\(\therefore PE=\dfrac{\sqrt{2}}{2} a=BE\).
在\(Rt△BEF\)中, \(E F=B E \cdot \sin 45^{\circ}=\dfrac{\sqrt{2}}{2} a \times \dfrac{\sqrt{2}}{2}=\dfrac{1}{2} a\).
在\(Rt△PEF\)中, \(\tan \angle P F E=\dfrac{P E}{E F}=\dfrac{\dfrac{\sqrt{2}}{2} a}{\dfrac{1}{2} a}=\sqrt{2}\).
【B组---提高题】
1.如图所示,四边形\(ABCD\)、\(ABEF\)都是矩形,它们所在的平面互相垂直,\(AD=AF=1\),\(AB=2\).点\(M\)、\(N\)分别在它们的对角线\(AC\)、\(BF\)上,且\(CM=BN=a(0<a<\sqrt{5})\),当\(MN\)的长最小时,\(a\)的值为( )
A.\(\dfrac{\sqrt{5}}{3}\) \(\qquad \qquad \qquad \qquad\) B.\(\dfrac{\sqrt{5}}{2}\)\(\qquad \qquad \qquad \qquad\) C.\(\dfrac{\sqrt{5}}{4}\) \(\qquad \qquad \qquad \qquad\) D. \(\dfrac{\sqrt{10}}{3}\)
2.长方形\(ABCD\)中,\(AB=2\),\(BC=1\),\(F\)是线段\(DC\)上一动点,且\(0<FC<1\).将\(△AFD\)沿\(AF\)折起,使平面\(AFD\perp\)平面\(ABC\),在平面\(ABD\)内作\(DK\perp AB\)于\(K\),设\(AK=t\),则\(t\)的值可能为( )
A.\(\dfrac{4}{3}\)\(\qquad \qquad \qquad \qquad\) B.\(\dfrac{3}{4}\) \(\qquad \qquad \qquad \qquad\) C.\(\dfrac{1}{3}\) \(\qquad \qquad \qquad \qquad\) D. \(\dfrac{1}{4}\)
3.已知点\(E\),\(F\)分别在正方体\(ABCD-A_1 B_1 C_1 D_1\)的棱\(AA_1\),\(BB_1\)上,且\(A_1 E=2EA\),\(BF=2FB_1\),侧面\(C_1 EF\)与平面\(A_1 B_1 C_1 D_1\)所成的二面角的正切值等于\(\underline{\quad \quad}\).
参考答案
-
答案 \(B\)
解析 如图所示,作\(MO\perp AB\)垂足为\(O\),连接\(ON\),则
\(\because\) 四边形\(ABCD\)、\(ABEF\)都是矩形,点\(M\)、\(N\)分别在它们的对角线\(AC\)、\(BF\)上,且\(CM=BN=a(0<a<\sqrt{5})\),
\(\therefore ON\perp AB\),\(\dfrac{O M}{1}=\dfrac{\sqrt{5}-a}{\sqrt{5}}\),\(\dfrac{O N}{1}=\dfrac{a}{\sqrt{5}}\),
\(\therefore O M=\dfrac{\sqrt{5}-a}{\sqrt{5}}\), \(O N=\dfrac{a}{\sqrt{5}}\),
\(\because OM\perp ON\),
\(\therefore M N=\sqrt{\left(\dfrac{\sqrt{5}-a}{\sqrt{5}}\right)^2+\left(\dfrac{a}{\sqrt{5}}\right)^2}=\sqrt{\dfrac{2\left(a-\dfrac{\sqrt{5}}{2}\right)^2+\dfrac{5}{2}}{5}} \geq \dfrac{\sqrt{2}}{2}\),
\(\therefore a=\dfrac{\sqrt{5}}{2}\)时,\(MN\)的长最小,
故选:\(B\).
-
答案 \(B\)
解析 如图,过\(D\)作\(DG\perp AF\),垂足为\(G\),连接\(GK\),
\(\because\)平面\(AFD\perp\)平面\(ABC\),又\(DK\perp AB\),
\(\therefore AB\perp\)平面\(DKG\),\(\therefore AB\perp GK\).
容易得到,当\(F\)接近\(E\)点时,\(K\)接近\(AB\)的中点,
\(\because\)长方形\(ABCD\)中,\(AB=2\),\(BC=1\),\(E\)为\(CD\)的中点,
\(\therefore\) 计算可得:\(A G=\dfrac{\sqrt{2}}{2}\),\(DG=\dfrac{\sqrt{2}}{2}\),\(DK=\dfrac{\sqrt{3}}{2}\),\(KG=\dfrac{1}{2}\),
\(\therefore t=AK=\dfrac{1}{2}\),
当\(F\)接近\(C\)点时,可得三角形\(ADG\)和三角形\(ADC\)相似.
\(\therefore \dfrac{A G}{1}=\dfrac{1}{\sqrt{5}}\),可解得\(A G=\dfrac{\sqrt{5}}{5}\),
可得三角形\(AKG\)和三角形\(ABC\)相似.
\(\therefore \dfrac{\dfrac{\sqrt{5}}{5}}{\sqrt{5}}=\dfrac{t}{2}\),解得 \(t=\dfrac{2}{5}\),
\(\therefore t\)的取值范围是\(\left(\dfrac{2}{5}, \dfrac{1}{2}\right)\).
故选:\(B\).
-
答案 \(\dfrac{\sqrt{2}}{3}\)
解析 因为\(E\),\(F\)分别在正方体\(ABCD-A_1 B_1 C_1 D_1\)的棱\(AA_1\),\(BB_1\)上,
延长\(A_1 B_1\),\(EF\),交点为\(M\),连接\(MC_1\),
过\(B_1\)作\(B_1 N\perp MC_1\),连接\(FN\),
所以平面\(C_1EF\)与平面\(A_1 B_1 C_1 D_1\)所成的二面角就是\(∠FNB_1\),
因为\(A_1 E=2EA\),\(BF=2FB_1\),
所以\(B_1 F:A_1E=1:2\),所以\(MB_1:MA_1=1:2\),
设正方体的棱长为\(1\),所以\(C_1 M=\sqrt{2}\),\(B_1 N=\dfrac{\sqrt{2}}{2}\), \(B_1 F=\dfrac{1}{3}\),
在\(Rt△FNB_1\)中, \(\tan \angle F N_1=\dfrac{B_1 F}{B_1 N}=\dfrac{\dfrac{1}{3}}{\dfrac{\sqrt{2}}{2}}=\dfrac{\sqrt{2}}{3}\),
故答案为: \(\dfrac{\sqrt{2}}{3}\).
【C组---拓展题】
1.在三棱锥\(P-ABC\)中,\(AB=AC=4\),\(∠BAC=120^{\circ}\),\(PB=PC=4\sqrt{3}\),平面\(PBC\perp\)平面\(ABC\),则三棱锥\(P-ABC\)外接球的表面积为\(\underline{\quad \quad}\).
2.如图,已知平面\(\alpha\perp\)平面\(\beta\),\(A\)、\(B\)是平面\(\alpha\)与平面\(\beta\)的交线上的两个定点,\(DA\subset\beta\),\(CB\subset\beta\),且\(DA\perp \alpha\),\(CB\perp \alpha\),\(AD=4\),\(BC=8\),\(AB=6\),在平面\(\alpha\)上有一个动点\(P\),使得\(∠APD=∠BPC\),则\(△PAB\)的面积的最大值是\(\underline{\quad \quad}\).
参考答案
-
答案 \(80π\)
解析 如图,设\(△ABC\)的外接圆的圆心为\(O_1\),
连接\(O_1 C\),\(O_1 A\),\(BC\cap O_1 A=H\),连接\(PH\).
由题意可得\(AH\perp BC\),且\(AH=\dfrac{1}{2} O_1 A=2\),\(BH=\dfrac{1}{2} BC=2\sqrt{3}\).
因为平面\(PBC\perp\)平面\(ABC\),且\(PB=PC\),
所以\(PH\perp\)平面\(ABC\),且\(P H=\sqrt{(4 \sqrt{3})^2-(2 \sqrt{3})^2}=6\).
设\(O\)为三棱锥\(P-ABC\)外接球的球心,
连接\(OO_1\),\(OP\),\(OC\),过\(O\)作\(OD\perp PH\),垂足为\(D\),
则外接球的半径\(R\)满足\(R^2=OO_1^2+4^2=\left(6-OO_1\right)^2+O_1 H^2\),
即\(OO_1^2+16=\left(6-OO_1\right)^2+4\),解得\(OO_1=2\),
从而\(R^2=20\),故三棱锥\(P-ABC\)外接球的表面积为\(4πR^2=80π\).
故答案为:\(80π\).
-
答案 \(12\)
解析 由题意平面\(\alpha\perp\)平面\(\beta\),\(A\)、\(B\)是平面\(\alpha\)与平面\(\beta\)的交线上的两个定点,\(DA\subset\beta\),\(CB\subset\beta\),且\(DA\perp \alpha\),\(CB\perp \alpha\),
\(\therefore △PAD\)与\(△PBC\)是直角三角形,
又\(∠APD=∠BPC\),\(\therefore △PAD∽△PBC\),
又\(AD=4\),\(BC=8\),\(\therefore PB=2PA\),
如图,
作\(PM\perp AB\),垂足为\(M\),令\(AM=t\),
在两个\(Rt△PAM\)与\(Rt△PBM\)中,\(AM\)是公共边及\(PB=2PA\),
\(\therefore P A^2-t^2=4 P A^2-(6-t)^2\),解得\(PA^2=12-4t\),
\(\therefore P M=\sqrt{12-4 t-t^2}\).
\(\therefore S=\dfrac{1}{2} \times A B \times P M=\dfrac{1}{2} \times 6 \times \sqrt{12-4 t-t^2}\)\(=3 \sqrt{12-4 t-t^2}=3 \sqrt{16-(t+2)^2} \leq 12\).
即三角形面积的最大值为\(12\).