\({\color{Red}{欢迎到学科网下载资料学习 }}\)
[ 【基础过关系列】高一数学同步精品讲义与分层练习(人教A版2019)]
(https://www.zxxk.com/docpack/2921718.html)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)
必修第二册同步巩固,难度2颗星!
基础知识
异面直线所成的角
(1) 范围
\([0 ^{\circ},90 ^{\circ}]\);当两直线平行时,它们所成的角为\(0^{\circ}\).
(2) 作异面直线所成的角:平移法
如图,在空间任取一点\(O\),过\(O\)作\(a' || a\),\(b' || b\),则\(a'\) ,\(b'\)所成的\(\theta\)角为异面直线\(a\),\(b\)所成的角.
特别地,找异面直线所成的角时,经常把一条异面直线平移到另一条异面直线的特殊点(如线段中点,端点等)上,形成异面直线所成的角.
直线与直线垂直
如果两条异面直线\(a\),\(b\)所成的角是直角,那么我们就说两条异面直线相互垂直,记作\(a\perp b\).
【例】 在正方体\(ABCD-A'B'C'D'\)中,求直线\(C'D\)与直线\(A'B\)、\(A'A\)所成的角.
解 连接\(AB'\),交\(A'B\)于\(O\),
\(\because AB' ||C'D\),\(\therefore\) 直线\(C'D\)与直线\(A'B\)所成的角是\(∠AOA'=90^{\circ}\),则\(C'D\perp A'B\),
直线\(C'D\)与直线\(A'A\)所成的角\(∠A' AO=45^{\circ}\).
基本方法
【题型1】 异面直线所成的角
【典题1】 如图,在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,求下列异面直线所成的角.
(1)\(AA_1\)与\(BC\); \(\qquad \qquad\) (2)\(DD_1\)与\(A_1 B\);\(\qquad \qquad\)(3)\(A_1 B\)与\(AC\).
解析 (1)\(\because AD∥BC\),\(AA_1\perp AD\),
\(\therefore AA_1\perp BC\),即\(AA_1\)与\(BC\)所成的角为\(90^{\circ}\).
(2)\(\because DD_1∥AA_1\),\(\therefore DD_1\)与\(A_1 B\)所成的角就是\(AA_1\)与\(A_1 B\)所成的角.
又\(∠AA_1 B=45^{\circ}\),\(\therefore DD_1\)与\(A_1 B\)所成的角为\(45^{\circ}\).
(3)连接\(D_1 C\),\(AD_1\),则\(A_1 B∥D_1 C\).
\(\therefore D_1 C\)与\(AC\)所成的角就是\(A_1 B\)与\(AC\)所成的角.
又\(\because AC=CD_1=D_1 A\),
\(\therefore ∠ACD_1=60^{\circ}\).
\(\therefore A_1 B\)与\(AC\)所成的角为\(60^{\circ}\).
点拨 求异面直线所成的角利用平移法.
【典题2】 如图,已知\(P\)是平行四边形\(ABCD\)所在平面外一点,\(M\),\(N\)分别是\(AB\),\(PC\)的中点.
(1)求证:\(MN∥\)平面\(PAD\);
(2)若\(MN=BC=4\),\(PA=4\sqrt{3}\),求异面直线\(PA\)与\(MN\)所成的角的大小.
解析 (1)证明:取\(PD\)中点\(Q\),连\(AQ\)、\(QN\),则\(AM∥QN\),且\(AM=QN\),
\(\therefore\)四边形\(AMNQ\)为平行四边形,
\(\therefore MN∥AQ\),
又\(\because AQ\)在平面\(PAD\)内,\(MN\)不在平面\(PAD\)内,
\(\therefore MN∥\)面\(PAD\);
(2)解:\(\because MN∥AQ\),
\(\therefore ∠PAQ\)即为异面直线\(PA\)与\(MN\)所成的角,
\(\because MN=BC=4\),\(PA=4\sqrt{3}\),
\(\therefore AQ=4\),根据余弦定理可知\(\cos ∠AQD+\cos ∠AQP=0\),
即\(\dfrac{16+x^2-48}{8 x}+\dfrac{16+x^2-16}{8 x}=0\),解得\(x=4\),
在三角形\(AQP\)中,\(AQ=PQ=4\),\(AP=4\sqrt{3}\),
\(\therefore \cos \angle P A Q=\dfrac{48+16-16}{2 \times 4 \times 4 \sqrt{3}}=\dfrac{\sqrt{3}}{2}\),即\(∠PAQ=30^{\circ}\),
\(\therefore\)异面直线\(PA\)与\(MN\)所成的角的大小为\(30^{\circ}\).
点拨
1.要求异面直线\(PA\)与\(MN\)所成的角,需平移其中一条线\(MN\)到\(AQ\)与另一条\(PA\)相交,把所成的角\(∠PAQ\)找到;有时候可以要同时平移两条异面直线;
2.利用平移法找到异面直线所成角后,找含该角的三角形,再解三角形便可(常用正弦定理,余弦定理等).
【巩固练习】
1.如图,空间四边形\(ABCD\)的对角线\(AC=8\),\(BD=6\),\(M\),\(N\)分别为\(AB\),\(CD\)的中点,并且异面直线\(AC\)与\(BD\)所成的角为\(90 ^{\circ}\),则 \(MN=\)( )
A. \(3\) \(\qquad \qquad \qquad \qquad\) B.\(4\) \(\qquad \qquad \qquad \qquad\) C. \(5\) \(\qquad \qquad \qquad \qquad\) D.\(6\)
2.四面体\(ABCD\)中,\(AB=BC=CD=DB=AC=2\),\(AD=3\),点\(M\)是边\(AB\)中点,则异面直线\(CM\)与\(AD\)所成角的余弦值为( )
A. \(\dfrac{\sqrt{3}}{4}\) \(\qquad \qquad \qquad \qquad\) B. \(\dfrac{5}{8}\) \(\qquad \qquad \qquad \qquad\) C.\(\dfrac{\sqrt{3}}{8}\) \(\qquad \qquad \qquad \qquad\) D. \(\dfrac{5}{6}\)
3.在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(E\),\(F\)分别为棱\(AD\),\(A_1 B_1\)的中点,则异面直线\(EF\)与\(CD_1\)夹角的余弦值为\(\underline{\quad \quad}\).
4.如图,在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,棱长为\(2\),\(E\)为\(BC\)的中点,则直线\(AE\)与直线\(BC_1\)所成角的余弦值为\(\underline{\quad \quad}\) .
5.如图,已知点\(P\)在圆柱\(OO_1\)的底面\(⊙O\)上, \(AA_1\perp AB\),\(BP\perp A_1 P\),\(AB\),\(A_1 B_1\)分别为\(⊙O\),\(⊙O_1\)的直径,且\(AB||A_1 B_1\). 若圆柱\(OO_1\)的体积\(V=12π\),\(OA=2\),\(∠AOP=120 ^{\circ}\),回答下列问题:
(1) 求三棱锥\(A_1-APB\)的体积
(2) 在线段\(AP\)上是否存在一点\(M\),使异面直线\(OM\)与\(A_1 B\)所成的角的余弦值为\(\dfrac{2}{5}\)?若存在,请指出点\(M\)的位置,并证明;若不存在,请说明理由
参考答案
-
答案 \(C\)
解析 取\(AD\)的中点\(P\),连接\(PM\),\(PN\),则\(BD∥PM\),\(AC∥PN\),
\(\therefore ∠MPN\)或其补角即异面直线\(AC\)与\(BD\)所成的角,
\(\therefore ∠MPN=90 ^{\circ}\),\(PN=\dfrac{1}{2} AC=4\),\(PM=\dfrac{1}{2} BD=3\),
\(\therefore MN=5\),
故选:\(C\)
-
答案 \(\dfrac{\sqrt{3}}{4}\)
解析 取\(BD\)的中点\(N\),连接\(MN\)、\(NC\),
因为点\(M\)是边\(AB\)中点,
则\(MN∥AD\),
则异面直线\(CM\)与\(AD\)所成角的平面角为\(∠CMN\)(或其补角),
又\(AB=BC=CD=DB=AC=2\),\(AD=3\),
则在\(△CMN\)中,\(MN=\dfrac{3}{2}\),\(CM=CN=\sqrt{3}\),
由余弦定理可得 \(\cos \angle C M N=\dfrac{M N^2+C M^2-C N^2}{2 \times M N \times C M}=\dfrac{\sqrt{3}}{4}\).
-
答案 \(\dfrac{\sqrt{3}}{6}\)
解析 在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,
如图,设棱\(BB_1\)的中点为\(G\),连接\(FG\),\(EG\),\(BE\),\(A_1 B\).
因为\(A_1 B∥FG\),\(CD_1∥A_1 B\),所以\(CD_1∥FG\),
故\(∠EFG\)为异面直线\(EF\)与\(CD_1\)所成的角.
设正方体\(ABCD-A_1 B_1 C_1 D_1\)的棱长为\(2\),
则\(FG=\sqrt{2}\),\(A_1 E=BE=\sqrt{5}\),\(EF=EG=\sqrt{6}\).
在等腰三角形\(EFG\)中, \(\cos \angle E F G=\dfrac{\frac{F G}{2}}{E F}=\dfrac{\sqrt{3}}{6}\).
故异面直线\(EF\)与\(CD_1\)夹角的余弦值为 \(\dfrac{\sqrt{3}}{6}\). -
答案 \(\dfrac{\sqrt{10}}{10}\)
解析 如图,取\(CC_1\)的中点\(F\),连接\(EF\),则\(EF∥BC_1\),连接\(AF\),
则\(∠AEF\)(或其补角)为直线\(AE\)与直线\(BC_1\)所成的角,
\(\because\)正方体的棱长为\(2\),\(\therefore AE=\sqrt{5}\),\(EF=\sqrt{2}\),
连接\(AC\),则 \(A F=\sqrt{8+1}=3\),
\(\therefore\)在\(△AEF\)中,由余弦定理得: \(\cos \angle A E F=\dfrac{A E^2+E F^2-A F^2}{2 A E \cdot E F}=\dfrac{5+2-9}{2 \times \sqrt{5} \times \sqrt{2}}=-\dfrac{\sqrt{10}}{10}\),
\(\therefore\)直线\(AE\)与直线\(BC_1\)所成角的余弦值为\(\dfrac{\sqrt{10}}{10}\). -
答案 (1) \(2\sqrt{3}\);(2) 点\(M\)为\(AP\)的中点
解析 (1) 由题意,得\(V=\pi \cdot O A^2 \cdot A A_1=4 \pi \cdot A A_1=12 \pi\),解得\(AA_1=3\).
由\(OA=2\),\(∠AOP=120 ^{\circ}\),得\(∠BAP=30 ^{\circ}\),\(BP=2\),\(AP=2\sqrt{3}\) .
\(\therefore S_{\triangle P A B}=\dfrac{1}{2} \times 2 \times 2 \sqrt{3}=2 \sqrt{3}\),
\(\therefore\)三棱锥\(A_1-APB\)的体积 \(V_{A_1-A P B}=\dfrac{1}{3} S_{A P A B} \cdot A A_1=\dfrac{1}{3} \times 2 \sqrt{3} \times 3=2 \sqrt{3}\),
(2) 当点\(M\)为\(AP\)的中点时,异面直线\(OM\)与\(A_1 B\)所成的角的余弦值为\(\dfrac{2}{5}\) .
证明如下:
\(\because O\),\(M\)分别为\(AB\),\(AP\)的中点,\(\therefore OM||BP\),
\(\therefore ∠A_1 BP\)就是异面直线\(OM\)与\(A_1 B\)所成的角,
\(\because A_1=3\),\(AB=4\),\(AA_1\perp AB\),\(\therefore A_1 B=5\),
又\(BP\perp A_1 P\), \(\therefore \cos \angle A_1 B P=\dfrac{B P}{A_1 B}=\dfrac{2}{5}\),
\(\therefore\)当点\(M\)为\(AP\)的中点时,异面直线\(OM\)与\(A_1 B\)所成的角的余弦值为\(\dfrac{2}{5}\).
【题型2】 直线与直线垂直
【典题1】 空间四边形\(ABCD\),\(E\),\(F\),\(G\)分别是\(BC\),\(AD\),\(DC\)的中点,\(FG=2\),\(GE=\sqrt{5}\),\(EF=3\). 求证:\(AC\perp BD\).
解析 \(\because\)点\(G\),\(E\)分别是\(CD\),\(BC\)的中点,\(\therefore GE||BD\),同理\(GF||AC\),
\(\therefore ∠FGE\)或\(∠FGE\)的补角是异面直线\(AC\)与\(BD\)所成的角.
在\(△EFG\)中,\(\because FG=2\),\(GE=\sqrt{5}\),\(EF=3\),满足 \(F G^2+G E^2=E F^2\),
\(\therefore ∠FGE=90 ^{\circ}\).
即异面直线\(AC\)与\(BD\)所成的角是\(90 ^{\circ}\),
\(\therefore AC\perp BD\).
点拨 证明两共面直线垂直,可利用勾股定理的逆定理;证明两异面直线垂直,证明夹角为\(90^{\circ}\).
【巩固练习】
1.正方体\(ABCD—A_1 B_1 C_1 D_1\)中,\(E\)是棱\(AB\)上的动点,则直线\(A_1 D\)与直线\(C_1 E\)所成的角等于 ( )
A.\(60^{\circ}\) \(\qquad \qquad \qquad \qquad\) B.\(90^{\circ}\) \(\qquad \qquad \qquad \qquad\) C.\(30^{\circ}\) \(\qquad \qquad \qquad \qquad\) D.随点\(E\)的位置而变化
2.点\(E\)、\(F\)分别是三棱雉\(P-ABC\)的棱\(AP\)、\(BC\)的中点,\(AB=6\),\(PC=8\),\(EF=5\),则异面直线\(AB\)与\(PC\)所成的角为\(\underline{\quad \quad}\) .
3.如图所示,在空间四边形\(ABCD\)中,\(AD=BC=2\),\(E\),\(F\)分别是\(AB\),\(CD\)的中点,\(EF=\sqrt{2}\). 求证:\(AD\perp BC\).
4.在四棱柱\(ABCD-A_1 B_1 C_1 D_1\)中,侧面都是矩形,底面\(ABCD\)是菱形且\(AB=BC=2\sqrt{3}\),\(∠ABC=120 ^{\circ}\),若异面直线\(A_1 B\)和\(AD_1\)所成的角为\(90 ^{\circ}\),试求\(AA_1\) .
参考答案
-
答案 \(B\)
解析 正方体\(ABCD—A_1 B_1 C_1 D_1\)中,直线\(A_1 D\perp\)平面\(ABC_1 D_1\),
\(\because C_1 E\subset\)平面\(ABC_1 D_1\),\(\therefore A_1 D\perp C_1 E\),
\(\therefore\)直线\(A_1 D\)与直线\(C_1 E\)所成的角等于\(90^{\circ}\),
故选 \(B\).
-
答案 \(90 ^{\circ}\).
解析 如图,取\(PB\)的中点\(G\),连结\(EG\),\(FG\),
则\(EG||AB\)且\(EG=\dfrac{1}{2} AB\),\(GF||\dfrac{1}{2} PC\)且\(GF=\dfrac{1}{2} PC\),
则\(∠EGF\)(或其补角)即为\(AB\)与\(PC\)所成的角,
在\(△EFG\)中,\(EG=\dfrac{1}{2} AB=3\),\(FG=\dfrac{1}{2} PC=4\),\(EF=5\),
所以\(∠EFG=90 ^{\circ}\),
即异面直线\(AB\)与\(PC\)所成的角为\(90 ^{\circ}\). -
证明 如图所示,取\(BD\)的中点\(H\),连接\(EH\),\(FH\).
因为\(E\)是\(AB\)的中点,且\(AD=2\),
所以\(EH∥AD\),\(EH=1\). 同理\(FH∥BC\),\(FH=1\),
所以\(∠EHF\)(或其补角)是异面直线\(AD\),\(BC\)所成的角.
因为\(EF=\sqrt{2}\), 所以\(E H^2+F H^2=E F^2\).
所以\(△EFH\)是等腰直角三角形,\(EF\)是斜边,
所以\(∠EHF=90 ^{\circ}\),即\(AD\)与\(BC\)所成的角是\(90 ^{\circ}\),
所以\(AD\perp BC\). -
答案 \(\sqrt{6}\).
解析 连接\(AC\)、\(CD_1\) ,
在四棱柱\(ABCD-A_1 B_1 C_1 D_1\)中,\(A_1 D_1 ||BC\)且\(A_1 D_1=BC\),
所以四边形\(A_1 BCD_1\)为平行四边形,则\(A_1 B||CD_1\),
所以异面直线\(A_1 B\)和\(AD_1\)所成的角为\(∠AD_1 C=90 ^{\circ}\),
因为四边形\(ADD_1 A_1\),\(CDD_1 C_1\)均为矩形,
则\(DD_1\perp AD\),\(DD_1\perp CD\),
在菱形\(ABCD\)中,\(∠ABC=120 ^{\circ}\),\(AB=BC=2\sqrt{3}\),
由余弦定理可得\(A C=\sqrt{A B^2+B C^2-2 A B \cdot B C \cos 120^{\circ}}=6\).
设\(AA_1=a\),则\(A D_1=C D_1=\sqrt{A D^2+D D_1^2}=\sqrt{a^2+12}\),
因为\(∠AD_1 C=90 ^{\circ}\),由勾股定理可得\(A D_1^2+C D_1^2=A C^2\) ,
即\(2\left(a^2+12\right)=36\),解得\(a=\sqrt{6}\).
所以\(AA_1=\sqrt{6}\).
分层练习
【A组---基础题】
1.正方体\(ABCD-A_1 B_1 C_1 D_1\)中,与对角线\(A_1 B\)成\(45^{\circ}\)的棱有 ( )条.
A.\(4\) \(\qquad \qquad \qquad \qquad\) B.\(8\) \(\qquad \qquad \qquad \qquad\) C.\(12\) \(\qquad \qquad \qquad \qquad\)D.\(2\)
2.如图,正方体\(ABCD-A_1 B_1 C_1 D_1\)中,点\(E\),\(F\)分别是\(AA_1\),\(AD\)的中点,则\(CD_1\)与\(EF\)所成角为 ( )
A.\(0^{\circ}\) \(\qquad \qquad \qquad \qquad\) B.\(45^{\circ}\) \(\qquad \qquad \qquad \qquad\)C.\(60^{\circ}\) \(\qquad \qquad \qquad \qquad\) D.\(90^{\circ}\)
3.在长方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(BC=2\),\(AB=BB_1=4\),\(E\),\(F\)分别是\(A_1 B_1\),\(CD\)的中点,则异面直线\(A_1 F\)与\(BE\)所成角的正切值为( )
A. \(\dfrac{\sqrt{5}}{5}\) \(\qquad \qquad \qquad \qquad\) B.\(\sqrt{5}\) \(\qquad \qquad \qquad \qquad\)C. \(\dfrac{\sqrt{30}}{6}\) \(\qquad \qquad \qquad \qquad\) D. \(\dfrac{\sqrt{6}}{6}\)
4.四面体\(ABCD\)中,\(AB=BC=CD=DB=AC=2\),\(AD=3\),点\(M\)是边\(AB\)中点,则异面直线\(CM\)与\(AD\)所成角的余弦值为( )
A. \(\dfrac{\sqrt{3}}{4}\) \(\qquad \qquad \qquad \qquad\) B. \(\dfrac{5}{8}\) \(\qquad \qquad \qquad \qquad\) C. \(\dfrac{\sqrt{3}}{8}\) \(\qquad \qquad \qquad \qquad\)D. \(\dfrac{5}{6}\)
5.(多选)如图,在四面体\(ABCD\)中,点\(P\),\(Q\),\(M\),\(N\)分别是棱\(AB\),\(BC\),\(CD\),\(AD\)的中点,截面\(PQMN\)是正方形,则下列结论正确的是 ( )
A. \(AC\perp BD\) \(\qquad \qquad \qquad \qquad\) B. \(AC||\)截面\(PQMN\)
C. \(AC=CD\) \(\qquad \qquad \qquad \qquad\) D.异面直线\(PM\)与\(BD\)所成的角为\(45 ^{\circ}\)
6.如图,直三棱柱\(ABC﹣A_1 B_1 C_1\)中,若\(AB=AC=AA_1=1\),\(BC=\sqrt{2}\),则异面直线\(A_1 C\)与\(B_1 C_1\)所成的角为\(\underline{\quad \quad}\).
7.如图,在四面体\(A-BCD\)中,\(AC=BD=a\),\(AC\)与 \(BD\)所成的角为\(60 ^{\circ}\),\(M\)、\(N\)分别为\(AB\)、\(CD\)的中点,则线段\(MN\)的长为\(\underline{\quad \quad}\).
8.如图,在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,动点\(M\)在线段\(A_1 C\)上,异面直线\(AD_1\)和\(BM\)所成的角为\(\theta\) ,则\(\theta\)的取值范围是\(\underline{\quad \quad}\).(用区间表示)
9.已知\(E\),\(F\),\(G\),\(H\)依次为空间四边形\(ABCD\)各边的中点.
(1)求证:\(E\),\(F\),\(G\),\(H\)四点共面;
(2)若\(AC\)与\(BD\)相互垂直,\(BD=2\),\(AC=4\),求\(E G^2+H F^2\);
(3)若\(E G=\sqrt{7}\),\(BD=2\),\(AC=4\),求直线\(BD\)与\(AC\)的夹角.
10.如图,空间四边形\(ABCD\)的对棱\(AD\),\(BC\)成\(60 ^{\circ}\)的角,且\(AD=BC=a\),平行于\(AD\)与\(BC\)的截面分别交\(AB\),\(AC\),\(CD\),\(BD\)于点\(E\),\(F\),\(G\),\(H\).E在\(AB\)的何处时截面\(EGFH\)的面积最大? 最大面积是多少?
参考答案
-
答案 \(B\)
解析 如图所示
在正方形\(ABB_1 A_1\)中,\(AA_1\) 、\(AB\)、\(BB_1\) 、\(A_1 B_1\)与\(A_1 B\)均成\(45^{\circ}\)角,
根据线线角的定义知,\(DD_1\) 、\(CC_1\)、\(DC\)、\(D_1 C_1\)都与\(A_1 B\)成\(45^{\circ}\)角,
所以满足条件的棱有\(8\)条,故选 \(B\). -
答案 \(C\)
解析 连结\(A_1 D\)、\(BD\)、\(A_1B\),
\(\because\)正方体\(ABCD-A_1 B_1 C_1 D_1\)中,点\(E\),\(F\)分别是\(AA_1\),\(AD\)的中点,\(\therefore EF∥A_1 D\),
\(\because A_1 B∥D_1 C\),\(\therefore ∠DA_1 B\)是\(CD_1\)与\(EF\)所成角,
\(\because A_1 D=A_1 B=BD\),\(\therefore ∠DA_1 B=60^{\circ}\).\(\therefore CD_1\)与\(EF\)所成角为\(60^{\circ}\).
故选 \(C\).
-
答案 \(A\)
解析 连接\(CE\),如图所示:
因为\(A_1 E=CF=\dfrac{1}{2} CD\),\(A_1 E∥CF\),所以四边形\(A_1 ECF\)是平行四边形,
所以\(EC∥A_1 F\),
故\(∠BEC\)是异面直线\(A_1 F\)与\(BE\)所成角,
因为\(BC=2\),\(AB=BB_1=4\),\(E\),\(F\)分别是\(A_1 B_1\),\(CD\)的中点,
所以\(B_1 E=DF=\dfrac{1}{2} CD=2\),
由勾股定理,得\(B E=\sqrt{2^2+4^2}=2 \sqrt{5}\),
在\(△BEC\)中,\(∠CBE=90^{\circ}\), \(\therefore \tan \angle B E C=\dfrac{B C}{B E}=\dfrac{\sqrt{5}}{5}\).
故选:\(A\). -
答案 \(A\)
解析 取\(BD\)的中点\(N\),连接\(MN\)、\(NC\),
因为点\(M\)是边\(AB\)中点,
则\(MN∥AD\),
则异面直线\(CM\)与\(AD\)所成角的平面角为\(∠CMN\)(或其补角),
又\(AB=BC=CD=DB=AC=2\),\(AD=3\),
则在\(△CMN\)中,\(MN=\dfrac{3}{2}\),\(CM=CN=\sqrt{3}\),
由余弦定理可得 \(\cos \angle C M N=\dfrac{M N^2+C M^2-C N^2}{2 \times M N \times C M}=\dfrac{\sqrt{3}}{4}\),
故选:\(A\).
-
答案 \(ABD\)
解析 因为截面\(PQMN\)是正方形,所以\(PQ||MN\),\(PN||QM\) ,
又\(MN\subset\)平面\(DAC\),\(PQ\not \subset\)平面\(DAC\),
所以\(PQ||\)平面\(DAC\),
又\(PQ\subset\)平面\(BAC\), 平面\(BAC \cap\)平面\(DAC=AC\),
所以\(PQ||AC||MN\),
因为\(AC\not \subset\)截面\(PQMN\),\(MN\subset\)截面\(PQMN\) ,
所以\(AC||\)截面\(PQMN\),故\(B\)正确,
同理可证\(PN||BD||MQ\),
因为\(PN\perp NM\),所以\(AC\perp BD\),故\(A\)正确,
又\(∠PMQ=45 ^{\circ}\),
所以异面直线\(PM\)与\(BD\)所成的角为\(45 ^{\circ}\),故\(D\)正确,
\(AC\)和\(CD\)不一定相等,故 \(C\)错误,
故选:\(ABD\). -
答案 \(\dfrac{\pi}{3}\)
解析 因为几何体是棱柱,\(BC∥B_1 C_1\),
则直线\(A_1 C\)与\(BC\)所成的角为就是异面直线\(A_1 C\)与\(B_1 C_1\)所成的角.
直三棱柱\(ABC﹣A_1 B_1 C_1\)中,
若\(AB=AC=AA_1=1\),\(BC=\sqrt{2}\),\(BA_1=\sqrt{2}\),\(CA_1=\sqrt{2}\),
三角形\(BCA_1\)是正三角形,异面直线所成角为\(\dfrac{\pi}{3}\).
故答案为\(\dfrac{\pi}{3}\). -
答案 \(\dfrac{a}{2}\)或\(\dfrac{\sqrt{3}}{2} a\).
解析 取\(BC\)的中点\(E\),连接\(EM\)、\(EN\),
\(\because M\)、\(E\)分别为\(AB\)、\(BC\)的中点,
\(\therefore ME||AC\)且 \(M E=\dfrac{1}{2} A C=\dfrac{a}{2}\),
同理可得\(EN||BD\)且\(E N=\dfrac{1}{2} B D=\dfrac{a}{2}\),
\(\therefore ∠MEN\)为异面直线\(AC\)与\(BD\)所成的角或其补角,则\(∠MEN=60 ^{\circ}\)或\(120 ^{\circ}\),
在\(△MEN\)中,\(E M=E N=\dfrac{a}{2}\).
若\(∠MEN=60 ^{\circ}\),则\(△MEN\)为等边三角形,此时\(M N=\dfrac{a}{2}\),
若\(∠MEN=120 ^{\circ}\),
由余弦定理可得 \(M N=\sqrt{E M^2+E N^2-2 E M \cdot E N \cos 120^{\circ}}=\dfrac{\sqrt{3}}{2} a\).
综上所述,\(MN=\dfrac{a}{2}\)或\(\dfrac{\sqrt{3}}{2} a\). -
答案 \(\left[\dfrac{\pi}{6}, \dfrac{\pi}{3}\right]\)
解析 连结\(BC_1\),则\(BC_1∥AD_1\),
所以异面直线\(AD_1\)和\(BM\)所成的角即为直线\(BC_1\)与\(BM\)所成的角,
所以\(\theta\)的最小值为\(BC_1\)与平面\(A_1 BC\)所成的角,
设\(CD_1\),\(C_1 D\)的交点为\(O\),
则\(∠OBC_1\)为\(BC_1\)与平面\(A_1 BC\)所成的角,
所以\(\sin \angle O B C_1=\dfrac{O C_1}{B C_1}=\dfrac{1}{2}\),
因为\(∠OBC_1\)为锐角,所以\(\angle O B C_1=\dfrac{\pi}{6}\),即\(\theta\)的最小值为 \(\dfrac{\pi}{6}\),
当点\(M\)与点\(A_1\)重合时,直线\(BC_1\)与\(BM\)所成的角为 \(\angle A_1 B C=\dfrac{\pi}{3}\),
此时\(\theta\)取得最大值,为 \(\dfrac{\pi}{3}\),
所以\(\theta\)的取值范围是\(\left[\dfrac{\pi}{6}, \dfrac{\pi}{3}\right]\).
-
答案 (1)略; (2) \(10\); (3) \(60^{\circ}\)
解析 (1)证明:如图所示,\(\because E\),\(F\),\(G\),\(H\)依次为空间四边形\(ABCD\)各边的中点,
\(\therefore EF=\dfrac{1}{2} AC\),\(GH=\dfrac{1}{2} AC\),且\(EF||AC\),\(GH||AC\),
\(\therefore EF||GH\)且\(EF=GH\),
\(\therefore\)四边形\(EFGH\)为平行四边形.
\(\therefore E\),\(F\),\(G\),\(H\)四点共面.
(2)解:\(\because AC=4\),\(\therefore EF=2\);同理可得:\(EH=1\).
又\(AC\perp BD\),\(\therefore EF\perp EH\),
可得四边形\(EFGH\)为矩形.
\(\therefore E G^2+H F^2=2 \times\left(2^2+1^2\right)=10\).
(3)解:由(1)可知:\(∠EFG\)或其补角为直线\(BD\)与\(AC\)的夹角.
\(\cos \angle E F G=\dfrac{2^2+1^2-(\sqrt{7})^2}{2 \times 2 \times 1}=-\dfrac{1}{2}\),
\(\therefore\)直线\(BD\)与\(AC\)的夹角为\(60^{\circ}\).
-
答案 当\(E\)为\(AB\)的中点时,截面的面积最大,最大面积为\(\dfrac{\sqrt{3}}{8} a^2\).
解析 因为\(BC||\)平面\(EFGH\),\(BC\subset\)平面\(ABC\),平面\(ABC \cap\)平面\(EFGH=EF\),
所以\(BC||EF\),同理\(GH||BC\),故\(GH||EF\),同理\(EH||FG\),
所以四边形\(EFGH\)为平行四边形,
\(\because AD\),\(BC\)成\(60 ^{\circ}\)的角,\(\therefore ∠HGF=60 ^{\circ}\)或\(120 ^{\circ}\).
设\(AE:AB=x\),则\(\dfrac{E F}{B C}=\dfrac{A E}{A B}=x\).
又\(BC=a\),\(\therefore EF=ax\). 由\(\dfrac{E H}{A D}=\dfrac{B E}{A B}=1-x\),得\(EH=a(1-x)\).
\(\therefore\)四边形\(EFGH\)的面积为\(E F \times E H \times \sin 60^{\circ}=a x \times a(1-x) \times \dfrac{\sqrt{3}}{2}\)
\(=\dfrac{\sqrt{3}}{2} a^2\left(-x^2+x\right)=\dfrac{\sqrt{3}}{2} a^2\left[-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\right]\) ,
当\(x=\dfrac{1}{2}\)时,即当\(E\)为\(AB\)的中点时,截面的面积最大,最大面积为\(\dfrac{\sqrt{3}}{8} a^2\).
【B组---提高题】
1.已知两异面直线\(a\),\(b\)所成的角为\(80^{\circ}\),过空间一点\(P\)作直线,使得\(l\)与\(a\),\(b\)的夹角均为\(50^{\circ}\),那么这样的直线有( )条
A.\(1\) \(\qquad \qquad \qquad \qquad\) B.\(2\) \(\qquad \qquad \qquad \qquad\) C.\(4\) \(\qquad \qquad \qquad \qquad\) D.\(3\)
2.在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(E\)为\(A_1 D_1\)的中点,平面\(A_1 C_1 B\)与平面\(CEC_1\)的交线为\(l\),则\(l\)与\(AB\)所成角的余弦值为( )
A. \(\dfrac{1}{3}\) \(\qquad \qquad \qquad \qquad\) B.\(\dfrac{2}{3}\) \(\qquad \qquad \qquad \qquad\) C.\(\dfrac{\sqrt{3}}{3}\) \(\qquad \qquad \qquad \qquad\) D.\(\dfrac{\sqrt{6}}{3}\)
参考答案
-
答案 \(D\)
解析 在空间取一点\(P\),经过点\(P\)分别作\(a∥a'\),\(b∥b'\),
设直线\(a'\)、\(b'\)确定平面\(\alpha\),
当直线\(PM\)满足它的射影\(PQ\)在\(a'\)、\(b'\)所成角的平分线上时,
\(PM\)与\(a'\)所成的角等于\(PM\)与\(b'\)所成的角
因为直线\(a\),\(b\)所成的角为\(80^{\circ}\),得\(a'\)、\(b'\)所成锐角等于\(80^{\circ}\)
所以当\(PM\)的射影\(PQ\)在\(a'\)、\(b'\)所成锐角的平分线上时,
\(PM\)与\(a'\)、\(b'\)所成角的范围是\([40 ^{\circ},90 ^{\circ} )\).
这种情况下,过点\(P\)有两条直线与\(a'\)、\(b'\)所成的角都是\(50^{\circ}\)
当\(PM\)的射影\(PQ\)在\(a'\)、\(b'\)所成钝角的平分线上时,
\(PM\)与\(a'\)、\(b'\)所成角的范围是\([50 ^{\circ},90 ^{\circ} )\).
这种情况下,过点\(P\)有且只有一条直线(即\(PM\subset \alpha\)时)与\(a'\)、\(b'\)所成的角都是\(50^{\circ}\),
综上所述,过空间任意一点\(P\)可作与\(a\),\(b\)所成的角都是\(50^{\circ}\)的直线有\(3\)条
故选:\(D\).
-
答案 \(D\)
解析 延长\(BA_1\),\(CE\)交直线于点\(M\),延长\(C_1 E\),\(B_1 A_1\)交于点\(N\),
连接\(MN\),\(MC_1\),\(MD_1\),则直线\(MC_1\)即为交线\(l\),
又\(AB∥C_1 D_1\),\(\therefore ∠MC_1 D_1\)即为\(l\)与\(AB\)所成的角,
设正方体棱长为\(1\),
\(\because E\)为\(A_1 D_1\)的中点,\(A_1 E∥B_1 C_1∥BC\),
\(\therefore A_1\)为\(MB\)的中点,\(A_1\)为\(NB_1\)的中点,点\(E\)为\(MC\)的中点,\(E\)为\(NC_1\)的中点,
\(\therefore EM=EC\),\(EN=EC_1\),又\(∠MEN=∠CEC_1\),
\(\therefore △EMN≅△ECC_1\),
\(\therefore MN=CC_1=1\),\(∠MNE=∠CC_1 E=90^{\circ}\),
\(\therefore C_1 D_1=1\),\(C_1 M=\sqrt{6}\),\(MD_1=\sqrt{3}\),
\(\therefore \cos \angle M C_1 D_1=\dfrac{C_1 D_1^2+C_1 M^2-M D_1^2}{2 C_1 D_1 \cdot C_1 M}=\dfrac{\sqrt{6}}{3}\),
即\(l\)与\(AB\)所成角的余弦值为 \(\dfrac{\sqrt{6}}{3}\).
故选:\(D\).
【C组---拓展题】
1.在正三棱台\(ABC-A_1 B_1 C_1\)中,\(AB=3AA_1=\dfrac{3}{2} A_1 B_1=6\),\(D\)是\(BC\)的中点,设\(A_1 D\)与\(BC\)、\(BB_1\)、\(BA\)所成角分别为\(\alpha\),\(β\),\(γ\),则( )
A. \(\alpha<\gamma<\beta\) \(\qquad \qquad\) B. \(\alpha<\beta<\gamma\) \(\qquad \qquad\)C. \(\beta<\gamma<\alpha\) \(\qquad \qquad\) D. \(\gamma<\beta<\alpha\)
参考答案
- 答案 \(D\)
解析 如图\(1\),令\(B_1 C_1\)的中点为\(D_1\),连接\(A_1 D_1\),\(DD_1\),
在平面\(ADD_1 A_1\)中,过\(A_1\) 作\(DD_1\)的平行线\(A_1 E\)得图\(2\),
在平面\(BCC_1 B_1\)中,连接\(B_1 D\)得图\(3\),过\(B_1\)作\(B_1 F\perp BC\),
由题意可得\(BF=1\),\(BB_1=2\),所以\(DD_1=B_1 F=\sqrt{3}\),\(∠B=60 ^{\circ}\),
又因为\(DF=2\),所以\(B_1 D=\sqrt{7}\),
在\(△BCB_1\)中, \(B_1 C=2 \sqrt{7}\),
则在图\(2\)中,\(AD=3\sqrt{3}\),\(DE=2\sqrt{3}\),所以\(AE=\sqrt{3}\),
又因为\(AA_1=2\), \(A_1 E=D D_1=\sqrt{3}\),
所以在三角形\(AA_1 E\)中由余弦定理可得: \(\cos \angle A_1 A D=\dfrac{4+3-3}{2 \times 2 \times \sqrt{3}}=\dfrac{\sqrt{3}}{3}\),
在三角形\(AA_1 D\)中由余弦定理可得: \(\cos \angle A_1 A D=\dfrac{4+27-A_1 D^2}{2 \times 2 \times 3 \sqrt{3}}=\dfrac{\sqrt{3}}{3}\),
解得 \(A_1 D=\sqrt{19}\),
①连接\(A_1 C\),则在三角形\(CA_1 D\)中,\(A_1 D=\sqrt{19}\),\(DC=3\), \(A_1 C=2 \sqrt{7}\),
所以\(\cos \angle A_1 D C=\dfrac{19+9-28}{2 \times \sqrt{19} \times 3}=0\),
所以\(∠A_1 DC=90^{\circ}\),即\(\alpha=90^{\circ}\);
②过\(A_1\)作\(A_1 M∥BB_1\),则\(AM=2\),
在三角形\(AMD\)中,\(∠MAD=30 ^{\circ}\),\(AD=3\sqrt{3}\),
则由余弦定理可得 \(M D=\sqrt{27+4-2 \times 2 \times 3 \sqrt{3} \times \dfrac{\sqrt{3}}{2}}=\sqrt{13}\),
在三角形\(A_1 MD\)中,\(A_1 M=2\), \(M D=\sqrt{13}\), \(A_1 D=\sqrt{19}\),
所以\(\cos \angle M A_1 D=\dfrac{4+19-13}{2 \times 2 \times \sqrt{19}}=\dfrac{5}{2 \sqrt{19}}=\dfrac{5 \sqrt{19}}{38}\),
所以 \(\cos \beta=\dfrac{5 \sqrt{19}}{38}\),
③在三角形\(A_1 B_1 D\)中,\(A_1 B_1=4\), \(A_1 D=\sqrt{19}\), \(B_1 D=\sqrt{7}\),
所以\(\cos \angle B_1 A_1 D=\dfrac{16+19-7}{2 \times 4 \times \sqrt{19}}=\dfrac{28}{8 \sqrt{19}}=\dfrac{7 \sqrt{19}}{38}\),
即 \(\cos \gamma=\dfrac{7 \sqrt{19}}{38}\),
因为\(y=\cos x\)在 \(\left(0, \dfrac{\pi}{2}\right]\)单调递减,且\(\cos γ>\cos β>\cos \alpha\),
所以\(\alpha>β>γ\),
故选:\(D\).