\({\color{Red}{欢迎到学科网下载资料学习 }}\)
[ 【基础过关系列】高一数学同步精品讲义与分层练习(人教A版2019)]
(https://www.zxxk.com/docpack/2921718.html)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)
必修第二册同步巩固,难度2颗星!
基础知识
定义
直线与平面无交点.
判定定理
如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.
(1) 若平面\(\alpha\)外一直线\(a\)与该平面一直线\(b\)平行,则直线\(a\)与平面\(\alpha\)没有公共点,即直线\(a\)与平面\(\alpha\)平行;
(2) 符号表述
(3) 若\(a\not \subset \alpha\),要证明\(a||\alpha\),则在平面\(\alpha\)内找一条直线与直线\(a\)平行.把直面平行问题转化为线线平行.
性质定理
一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行.
(1) 符号表述
(2) 证明:如上图,\(\because \alpha\cap \beta =b\),\(\therefore b\subset \alpha\),又\(a||\alpha\),\(\therefore a\)与\(b\)无公共点,
又\(a\subset \beta\),\(b\subset \beta\),\(\therefore a||b\).
(3) 该性质定理可以由线面平行得到线线平行,即线线平行问题也可以转化为线面平行.
证明线面平行的方法
① 定义法(反证)\(l\cap \alpha=∅ ⇒l|| \alpha\)(用于判断)
② 判定定理:\(\left.\begin{array}{c}
a \| b \\
a \not \subset \alpha \\
b \subset \alpha
\end{array}\right\} \Rightarrow a \| \alpha(\text { 线线平行 } \Rightarrow \text { 线面平行 })\)
③ \(\left.\begin{array}{c}
\alpha \| \beta \\
a \subset \alpha
\end{array}\right\} \Rightarrow a \| \beta \text { (面面平行 } \Rightarrow \text { 线面平行) }\)
④ \(\left.\begin{array}{l}
b \perp a \\
b \perp \alpha \\
a \not \subset \alpha
\end{array}\right\} \Rightarrow a \| \alpha\)
基本方法
【题型1】 线面平行的判定
【典题1】如图所示,在棱长为\(a\)的正方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(E\) ,\(F\) ,\(P\) ,\(Q\)分别是\(BC\),\(C_1 D_1\),\(AD_1\),\(BD\)的中点.
(1) 求证:\(PQ||\)平面\(DCC_1 D_1\);
(2) 求\(PQ\)的长;
(3) 求证:\(EF||\)平面\(BB_1 D_1 D\).
解析 (1) 如图所示,连接\(AC\),\(CD_1\)
\(\because P\),\(Q\)分别为\(AD_1\)、\(AC\)的中点,\(\therefore PQ||CD_1\),
\(\because CD_1\subset\)平面\(DCC_1 D_1\),\(PQ\not \subset\)平面\(DCC_1 D_1\),
\(\therefore PQ||\)平面\(DCC_1 D_1\).
(2) 由题意,可得:\(PQ=\dfrac{1}{2} D_1 C=\dfrac{\sqrt{2}}{2} a\),
(3) 连接\(QE\)、\(D_1 Q\),
\(\because E\)、\(Q\)分别是\(BC\),\(BD\)的中点,\(\therefore QE||CD\)且\(QE=\dfrac{1}{2} CD\),
又\(D_1 F||CD\)且\(QE=\dfrac{1}{2} CD\),\(\therefore D_1 F=QE\),\(D_1 F||QE\),
\(\therefore\)四边形\(D_1 FEQ\)是平行四边形,
\(\therefore D_1 Q||EF\),
又\(\because D_1 Q\subset\)平面\(D_1 FEQ\),\(EF\not \subset\)平面\(D_1 FEQ\),
\(\therefore EF||\)平面\(BB_1 D_1 D\).
点拨
① 在立体几何中,遇到中点我们往往会想到中位线;
② 证明线面平行的过程中,经常利用三角形的中位线(如第一问)和构造平行四边形的方法(如第三问);
③ 证明线面平行可转化为证明线线平行或面面平行,本题第三问还有多种方法.
【巩固练习】
1.如图,在下列四个正方体中,\(A\),\(B\)为正方体的两个顶点,\(M\),\(N\),\(Q\)为所在棱的中点,则在这四个正方体中,直线\(AB\)与平面\(MNQ\)不平行的是( )
A. \(\qquad\) B. \(\qquad\) C. \(\qquad\) D.
2.如图所示,四棱锥\(P-ABCD\)的底面是一直角梯形,\(AB∥CD\),\(CD=2AB\),\(E\)为\(PC\)的中点,则\(BE\)与平面\(PAD\)的位置关系为\(\underline{\quad \quad}\).
3.如图所示,正四棱锥\(P—ABCD\)的各棱长均为\(13\),\(M\),\(N\)分别为\(PA\),\(BD\)上的点,且\(PM:MA=BN:ND=5:8\).
(1)求证:直线\(MN∥\)平面\(PBC\); \(\qquad\) (2)求线段\(MN\)的长.
参考答案
-
答案 \(A\)
解析 对于选项\(B\),由于\(AB∥MQ\),结合线面平行判定定理可知\(B\)不满足题意;
对于选项\(C\),由于\(AB∥MQ\),结合线面平行判定定理可知\(C\)不满足题意;
对于选项\(D\),由于\(AB∥NQ\),结合线面平行判定定理可知\(D\)不满足题意;
所以选项\(A\)满足题意,
故选:\(A\). -
答案 平行
解析 取\(PD\)的中点\(F\),连接\(EF\),\(AF\),由\(E\)、\(F\)为中点,
所以\(EF∥CD\)且\(EF=\dfrac{1}{2} CD\),又\(AB∥CD\),\(CD=2AB\),
故\(EF∥AB\),且\(EF=AB\),从而四边形\(ABEF\)为平行四边形,
所以\(BE∥AF\),\(BE\not \subset\) 平面\(PAD\),\(AF\subset\)平面\(PAD\),
根据线面平行的判定定理可得\(BE∥\)平面\(PAD\);
故答案为:平行
-
答案 (1)略 (2) \(7\)
解析 (1)证明 连接\(AN\)并延长交\(BC\)于\(Q\),连接\(PQ\),如图所示.
\(\because AD∥BQ\),\(\therefore △QNB∽△AND\),
\(\therefore \dfrac{N Q}{A N}=\dfrac{B N}{N D}=\dfrac{B Q}{A D}=\dfrac{5}{8}\),
又 \(\because \dfrac{P M}{M A}=\dfrac{B N}{N D}=\dfrac{5}{8}\),
\(\therefore \dfrac{M P}{A M}=\dfrac{N Q}{A N}=\dfrac{5}{8}\),\(\therefore MN||PQ\),
又\(\because PQ\subset\) 平面\(PBC\),\(MN\not \subset\)平面\(PBC\),
\(\therefore MN∥\)平面\(PBC\).
(2)解 在等边\(△PBC\)中, \(\angle P B C=60^{\circ}\),
在\(△PBQ\)中由余弦定理知知 \(P Q^2=P B^2+B Q^2-2 P B \cdot B Q \cos \angle P B Q\)\(=13^2+\left(\dfrac{65}{8}\right)^2-2 \times 13 \times \dfrac{65}{8} \times \dfrac{1}{2}=\dfrac{8281}{64}\),
\(\therefore P Q=\dfrac{91}{8}\),
\(\because MN∥PQ\),\(MN:PQ=8:13\),
\(\therefore M N=\dfrac{91}{8} \times \dfrac{8}{13}=7\).
【题型2】 线面平行的性质
【典题1】 如图,\(P\)是\(△ABC\)所在平面外一点,\(E\),\(F\),\(G\)分别在\(AB\),\(BC\),\(PC\)上,且\(PG=2GC\),\(AC∥\)平面\(EFG\),\(PB∥\)平面\(EFG\).则 \(\dfrac{A E}{E B}=\) ( )
A.\(\dfrac{1}{2}\) \(\qquad \qquad \qquad \qquad\) B.\(1\) \(\qquad \qquad \qquad \qquad\)C. \(\dfrac{3}{2}\) \(\qquad \qquad \qquad \qquad\) D.\(2\)
解析 \(\because AC∥\)平面\(EFG\),平面\(EFG\cap\)平面\(ABC=EF\),\(PB∥\)平面\(EFG\),平面\(EFG\cap\) 平面\(PBC=FG\),
\(\therefore AC∥EF\),\(PB∥FG\),
\(\therefore PG:GC=BF:FC=EB:AE\),
\(\because PG=2GC\),\(\therefore BF=2FC\),
\(\therefore EB=2AE\),
\(\therefore \dfrac{A E}{E B}=\dfrac{1}{2}\).
故选:\(A\).
【典题2】 如图,在空间四边形\(ABCD\)中,\(E\),\(F\),\(G\),\(H\)分别是\(AB\),\(BC\),\(CD\),\(DA\)上的点,\(EH∥FG\).求证:\(EH∥BD\).
证明 因为\(EH∥FG\),\(FG\subset\) 平面\(BCD\),\(EH\not \subset\)平面\(BCD\),
所以\(EH∥\)平面\(BCD\).
因为\(EH\subset\)平面\(ABD\),平面\(ABD\cap\)平面\(BCD=BD\),
所以\(EH∥BD\).
【巩固练习】
1.若直线\(a∥\)平面\(\alpha\),直线\(b∥\)平面\(\alpha\),则\(a\)与\(b\)的位置关系是( )
A.相交 \(\qquad \qquad \qquad \qquad\) B.平行 \(\qquad \qquad \qquad \qquad\) C.异面 \(\qquad \qquad \qquad \qquad\) D.相交、平行 或异面
2.在空间四边形\(ABCD\)中,\(E\),\(F\),\(G\),\(H\)分别是\(AB\),\(BC\),\(CD\),\(DA\)上的点,当\(BD∥\)平面\(EFGH\)时,下面结论正确的是( )
A.\(E\),\(F\),\(G\),\(H\)一定是各边的中点\(\qquad \qquad\) B.\(G\),\(H\)一定是\(CD\),\(DA\)的中点
C.\(AE:EB=AH:HD\) \(\qquad \qquad \qquad\) D.四边形\(EFGH\)是平行四边形
3.如图在三棱锥\(P﹣ABC\)中,\(D\)为\(PB\)中点,\(E\)为\(BC\)中点,点\(F\)在\(AC\)上,若直线\(AD∥\)平面\(PEF\),则\(\dfrac{AF}{FC}\)的值为( )
A.\(1\) \(\qquad \qquad \qquad \qquad\) B.\(\dfrac{1}{2}\) \(\qquad \qquad \qquad \qquad\)C.\(2\) \(\qquad \qquad \qquad \qquad\)D. \(\dfrac{2}{3}\)
4.如图,\(P\)为平行四边形\(ABCD\)所在平面外一点,\(E\)为\(AD\)上一点,且 \(\dfrac{A E}{E D}=\dfrac{1}{3}\),\(F\)为\(PC\)上一点,当\(PA∥\)平面\(EBF\)时, \(\dfrac{P F}{F C}=\)( )
A.\(\dfrac{2}{3}\) \(\qquad \qquad \qquad \qquad\) B.\(\dfrac{1}{4}\) \(\qquad \qquad \qquad \qquad\) C.\(\dfrac{1}{3}\) \(\qquad \qquad \qquad \qquad\) D.\(\dfrac{1}{2}\)
5.如图.在四棱锥中.底面\(ABCD\)是平行四边形,点\(M\)为棱\(AB\)上一点\(AM=2MB\).点\(N\)为棱\(PC\)上一点,
(1)若\(PN=2NC\),求证:\(MN∥\)平面\(PAD\);
(2)若\(MN∥\)平面\(PAD\),求证:\(PN=2NC\).
参考答案
-
答案 \(D\)
-
答案 \(C\)
解析 \(\because\)在空间四边形\(ABCD\)中,\(E\),\(F\),\(G\),\(H\)分别是\(AB\),\(BC\),\(CD\),\(DA\)上的点,\(BD∥\)平面\(EFGH\),
\(\therefore BD∥EH\),\(BD∥FG\),
\(E\),\(F\),\(G\),\(H\)未必是各边的中点,故\(A\),\(B\)错误;
\(\therefore AE:EB=AH:HD\),故\(C\)正确;
\(\because EH∥FG\),\(\therefore\) 四边形\(EFGH\)是平行四边形或梯形,故\(D\)错误.
故选:\(C\).
-
答案 \(B\)
解析 连接\(CD\),交\(PE\)于\(G\),连接\(FG\),如图,
\(\because AD∥\)平面\(PEF\),平面\(ADC\cap\)平面\(PEF=FG\),
\(\therefore AD∥FG\),
\(\because\)点\(D\),\(E\)分别为棱\(PB\),\(BC\)的中点.
\(\therefore G\)是\(△PBC\)的重心,
\(\therefore \dfrac{A F}{F C}=\dfrac{D G}{G C}=\dfrac{1}{2}\).
故选:\(B\). -
答案\(B\)
解析 连接\(AC\)交\(BE\)于点\(M\),连接\(FM\).
\(\because PA∥\)平面\(EBF\),\(PA\subset\) 平面\(PAC\),平面\(PAC\cap\)平面\(EBF=FM\),
\(\therefore PA∥FM\),
又\(\dfrac{A E}{E D}=\dfrac{1}{3}\),可得 \(A E=\dfrac{1}{4} A D=\dfrac{1}{4} B C\),
\(\therefore \dfrac{P F}{F C}=\dfrac{A M}{M C}=\dfrac{A E}{B C}=\dfrac{\dfrac{1}{4} B C}{B C}=\dfrac{1}{4}\).
故选:\(B\).
-
证明 (1)过\(N\)作\(NE∥CD\)交\(PD\)于\(E\),连接\(AE\).
则 \(\dfrac{E N}{C D}=\dfrac{P N}{P C}=\dfrac{2}{3}\), \(\therefore E N=\dfrac{2}{3} C D\),
又\(AM=2MB\), \(\therefore A M=\dfrac{2}{3} A B\).
又\(AB=CD\)且\(AB∥ CD\),\(\therefore AM=EN\)且\(AM∥ EN\),
\(\therefore\)四边形\(AMNE\)是平行四边形,
\(\therefore MN∥AE\),又\(MN\not \subset\)平面\(PAD\),\(AE\subset\)平面\(PAD\),\(\therefore MN∥\)平面\(PAD\).
(2)过\(N\)作\(NE∥CD\)交\(PD\)于\(E\),
\(\because NE∥CD∥AB\),\(\therefore NE∥AB\),
\(\therefore A\),\(M\),\(N\),\(E\)四点共面,
\(\because MN∥\)平面\(PAD\),\(MN\subset\)平面\(AMNE\),平面\(AMNE\cap\)平面\(PAD=AE\),
\(\therefore MN∥AE\),
\(\therefore\)四边形\(AMNE\)是平行四边形, \(\therefore N E=A M=\dfrac{2}{3} A B=\dfrac{2}{3} C D\).
\(\therefore \dfrac{P N}{P C}=\dfrac{N E}{C D}=\dfrac{2}{3}\),\(\therefore PN=2NC\).
分层练习
【A组---基础题】
1.如果直线\(a∥\)平面\(\alpha\),那么直线\(a\)与平面\(\alpha\)内的( )
A.一条直线不相交 \(\qquad \qquad \qquad \qquad\) B.两条直线不相交
C.无数条直线不相交 \(\qquad \qquad \qquad \qquad\) D.任意一条直线不相交
2.下面命题中正确的个数是( )
①若直线\(l\)上有无数个点不在平面\(\alpha\)内,则\(l∥\alpha\);
②若直线\(l\)与平面\(\alpha\)平行,则\(l\)与平面\(\alpha\)内的任意一条直线都平行;
③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行;
④若直线\(l\)与平面\(\alpha\)平行,则\(l\)与平面\(\alpha\)内的任意一条直线都没有公共点.
A.\(0\) \(\qquad \qquad \qquad \qquad\) B.\(1\) \(\qquad \qquad \qquad \qquad\) C.\(2\) \(\qquad \qquad \qquad \qquad\) D.\(3\)
3.如图,在下列四个正方体中,\(A\),\(B\)为正方体的两个顶点,\(M\),\(N\),\(Q\)为所在棱的中点,则在这四个正方体中,直线\(AB\)与平面\(MNQ\)不平行的是( )
A. \(\qquad\) B. \(\qquad\) C. \(\qquad\) D.
4.一几何体的平面展开图如图所示,其中四边形\(ABCD\)为正方形,\(E\)、\(F\)分别为\(PB\)、\(PC\)的中点,在此几何体中,下面结论错误的是( )
A.直线\(AE\)与直线\(BF\)异面 \(\qquad \qquad \qquad \qquad\) B.直线\(AE\)与直线\(DF\)异面
C.直线\(EF∥\)平面\(PAD\) \(\qquad \qquad \qquad \qquad\) D.直线\(EF∥\)平面\(ABCD\)
- 如图,在空间四边形\(ABCD\)中,\(M∈AB\),\(N∈AD\),若 \(\dfrac{A M}{M B}=\dfrac{A N}{N D}\),则直线\(MN\)与平面\(BDC\)的位置关系是\(\underline{\quad \quad}\).
6.如图,在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(E\)为\(BC\)的中点,\(F\)为正方体棱的中点,则满足条件直线\(EF∥\)平面\(ACD_1\)的点\(F\)的个数是\(\underline{\quad \quad}\).
7.如图所示,\(P\)为\(▱ABCD\)所在平面外一点,\(E\)为\(AD\)的中点,\(F\)为\(PC\)上一点,当\(PA∥\)平面\(EBF\)时, \(\dfrac{P F}{F C}=\) \(\underline{\quad \quad}\) .
8.如图:平行四边形\(ABCD\)和平行四边形\(CDEF\)有一条公共边\(CD\),\(M\)为\(FC\)的中点,证明:\(AF∥\)平面\(MBD\).
9.如图,已知在四棱锥\(P﹣ABCD\)中,底面\(ABCD\)是平行四边形,\(M\)为\(PC\)的中点,在\(DM\)上任取一点\(G\),过\(G\)和\(AP\)作平面\(PAHG\)交平面\(DMB\)于\(GH\),求证:
(1)求证:\(BC∥\)平面\(PAD\);\(\qquad\) (2)求证:\(AP∥\)平面\(BDM\);(3)求证:\(AP∥GH\).
10.如图所示,四边形\(EFGH\)为空间四边形\(ABCD\)的一个截面,若截面为平行四边形.
(1)求证:\(AB∥\)平面\(EFGH\),\(CD∥\)平面\(EFGH\).
(2)若\(AB=4\),\(CD=6\),求四边形\(EFGH\)周长的取值范围.
参考答案
-
答案 \(D\)
-
答案 \(B\)
解析 如图所示:
我们借助长方体模型,棱\(AA_1\)所在直线有无数点在平面\(ABCD\)外,但棱\(AA_1\)所在直线与平面\(ABCD\)相交,所以命题①不正确.
\(A_1 B_1\)所在直线平行于平面\(ABCD\),\(A_1 B_1\)显然不平行于\(BD\),所以命题②不正确.
\(A_1 B_1∥AB\),\(A_1 B_1\)所在直线平行于平面\(ABCD\),但直线\(AB\subset\)平面\(ABCD\),
所以命题③不正确.
\(l\)与平面\(\alpha\)平行,则\(l\)与\(\alpha\)无公共点,\(l\)与平面\(\alpha\)内所有直线都没有公共点,所以命题④正确. -
答案 \(B\)
解析 对于选项\(A\),由于\(AB∥MQ\),结合线面平行判定定理可知\(AB\)与平面\(MNQ\)平行;
对于选项\(B\),如图,
\(O\)为底面对角线的交点,可得\(AB∥OQ\),
又\(OQ\cap\)平面\(MNQ=Q\),
所以直线\(AB\)与平面\(MNQ\)不平行.
对于选项\(C\),由题意,可得\(AB∥MN\),结合线面平行判定定理可知\(AB\)与平面\(MNQ\)平行;
对于选项\(D\),由于\(AB∥MQ\),结合线面平行判定定理可知\(AB\)与平面\(MNQ\)平行;
故选:\(B\). -
答案\(B\)
解析 由题可知,该几何体为正四棱锥,
对\(A\),可假设\(AE\)与\(BF\)共面,由图可知,点\(F\)不在平面\(ABE\)中,故矛盾,\(A\)正确;
对\(B\),因\(E\),\(F\)为\(BP\),\(CP\)中点,故\(EF∥BC\),
又四边形\(ABCD\)为正方形,所以\(AD∥BC\),
故\(EF∥AD\),\(A\),\(D\),\(E\),\(F\)四点共面,\(B\)错;
对\(C\),由\(B\)的证明可知,\(EF∥AD\),又\(AD\subset\)平面\(PAD\),
故直线\(EF∥\)平面\(PAD\),\(C\)正确;
对\(D\),同理由\(B\)的证明可知,\(EF∥BC\),又\(BC\subset\) 平面\(ABCD\),
故直线\(EF∥\)平面\(ABCD\),\(D\)正确;
故选:\(B\). -
答案 平行
解析 在平面\(ABD\)中,\(\dfrac{A M}{M B}=\dfrac{A N}{N D}\),\(\therefore MN∥BD\).
又\(MN\not \subset\)平面\(BCD\),\(BD\subset\) 平面\(BCD\),
\(\therefore MN∥\)平面\(BCD\).
故答案为:平行 -
答案 \(5\)
解析 \(\because F\)为正方体棱的中点,
由题意可取棱\(CC_1\),\(C_1 D_1\),\(D_1 A_1\),\(AA_1\),\(AB\)的中点\(F_1\),\(F_2\),\(F_3\),\(F_4\),\(F_5\),
由面面平行的判断定理显然可得面\(EF_1 F_2 F_3 F_4 F_5||\)平面\(ACD_1\),
即\(F\)可以取点\(F_1\),\(F_2\),\(F_3\),\(F_4\),\(F_5\)中的任何一个都满足条件直线\(EF∥\)平面\(ACD_1\),
即满足条件直线\(EF∥\)平面\(ACD_1\)的点\(F\)的个数是\(5\),
故答案为:\(5\). -
答案 \(\dfrac{1}{2}\)
解析 连接\(AC\)交\(BE\)于点\(M\),连接\(FM\).
\(\because PA∥\)平面\(EBF\),\(PA\subset\)平面\(PAC\),平面\(PAC\cap\)平面\(EBF=EM\),
\(\therefore PA∥EM\), \(\therefore \dfrac{P F}{F C}=\dfrac{A M}{M C}=\dfrac{A E}{B C}=\dfrac{1}{2}\),
故答案为:\(\dfrac{1}{2}\).
-
证明 连接\(AC\),交\(BD\)于\(O\),连接\(MO\),
\(\because\)四边形\(ABCD\)为平行四边形,则\(O\)为\(AC\)的中点,
又\(\because M\)为\(FC\)的中点,
故\(OM\)为\(△ACF\)的中位线,
故\(OM∥AF\),
\(\because AF\not \subset\)平面\(MBD\),\(OM\subset\) 平面\(MBD\).
\(\therefore AF∥\)平面\(MBD\). -
证明 (1)证明:因为四边形\(ABCD\)为平行四边形,则\(BC∥AD\),
\(\because BC\not \subset\)平面\(PAD\),\(AD\subset\)平面\(PAD\),
因此,\(BC∥\)平面\(PAD\).
(2)证明:连接AC交BD于点N,连接MN,
因为四边形\(ABCD\)为平行四边形,\(AC\cap BD=N\),则\(N\)为\(AC\)的中点,
又因为\(M\)为\(PC\)的中点,则\(PA∥MN\),
\(\because AP\not \subset\)平面\(BDM\),\(MN\subset\)平面\(BDM\),
\(\therefore AP∥\)平面\(BDM\).
(3)证明:\(\because AP∥\)平面\(BDM\),\(AP\subset\)平面\(APGH\),平面\(APGH\cap\)平面\(BDM=GH\),
\(\therefore AP∥GH\). -
答案 (1) 略; (2) \((8,12)\)
解析 (1)证明 \(\because\)四边形\(EFGH\)为平行四边形,\(\therefore EF∥HG\).
\(\because HG\subset\)平面\(ABD\),\(\therefore EF∥\)平面\(ABD\).
\(\because EF\subset\)平面\(ABC\),平面\(ABD\cap\)平面\(ABC=AB\),
\(\therefore EF∥AB\).
\(\therefore AB∥\)平面\(EFGH\).
同理可证,\(CD∥\)平面\(EFGH\).
(2)解 设\(EF=x(0<x<4)\),由于四边形\(EFGH\)为平行四边形,
\(\therefore \dfrac{C F}{C B}=\dfrac{x}{4}\).则 \(\dfrac{F G}{6}=\dfrac{B F}{B C}=\dfrac{B C-C F}{B C}=1-\dfrac{x}{4}\).
从而 \(F G=6-\dfrac{3}{2} x\).
\(\therefore\)四边形\(EFGH\)的周长 \(l=2\left(x+6-\dfrac{3}{2} x\right)=12-x\).
又\(0<x<4\),则有\(8<l<12\),
\(\therefore\)四边形\(EFGH\)周长的取值范围是\((8,12)\).
【B组---提高题】
1.如图,在四面体\(ABCD\)中,\(AB=CD=2\),\(AD=BD=3\),\(AC=BC=4\),点\(E\),\(F\),\(G\),\(H\)分别在棱\(AD\),\(BD\),\(BC\),\(AC\)上,若直线\(AB\),\(CD\)都平行于平面\(EFGH\),则四边形\(EFGH\)面积的最大值是( )
A.\(\dfrac{1}{2}\) \(\qquad \qquad \qquad \qquad\) B.\(\dfrac{\sqrt{2}}{2}\) \(\qquad \qquad \qquad \qquad\) C.\(1\) \(\qquad \qquad \qquad \qquad\) D.\(2\)
2.如图,在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(E\),\(F\),\(G\)分别是\(AB\),\(CC_1\),\(AD\)的中点.
(1)证明:\(EG∥\)平面\(D_1 B_1 C\);
(2)棱\(CD\)上是否存在点\(T\),使\(AT∥\)平面\(B_1 EF\)?若存在,求出 \(\dfrac{D T}{D C}\)的值;若不存在,请说明理由.
参考答案
-
答案 \(C\)
解析 \(\because\)直线\(AB\)平行于平面\(EFGH\),且平面\(ABC\)交平面\(EFGH\)于\(HG\),
\(\therefore HG∥AB\);
同理\(EF∥AB\),\(FG∥CD\),\(EH∥CD\),
所以\(FG∥EH\),\(EF∥HG\).
故:四边形\(EFGH\)为平行四边形.
又\(\because AD=BD\),\(AC=BC\)的对称性,可知\(AB⊥CD\).
所以四边形\(EFGH\)为矩形.
设\(BF∶BD=BG∶BC=FG∶CD=x\),\((0≤x≤1)\),
\(FG=2x\),\(HG=2(1-x)\),
\(S_{E F G H}=F G \times H G=4 x(1-x)=-4\left(x-\dfrac{1}{2}\right)^2+1\),
根据二次函数的性质可知: \(S_{E F G H}\)面积的最大值\(1\).
故选:\(C\). -
答案 (1) 略; (2) 当 \(\dfrac{D T}{D C}=\dfrac{1}{4}\)时,\(AT∥\)平面\(B_1 EF\).
解析 (1)连接\(BD\),\(B_1 D_1\),\(CD_1\),
\(\because E\),\(G\)分别为\(AB\),\(AD\)中点,
\(\therefore EG∥BD\),
\(\because BB_1∥DD_1\),\(BB_1=DD_1\),
\(\therefore\)四边形\(BDD_1 B_1\)为平行四边形,
\(\therefore BD∥B_1 D_1\),
\(\therefore EG∥B_1 D_1\),
又\(EG\not \subset\)平面\(D_1 B_1 C\),\(B_1 D_1\subset\)平面\(D_1 B_1 C\),
\(\therefore EG∥\)平面\(D_1 B_1 C\).
(2)假设在棱\(CD\)上存在点\(T\),使得\(AT∥\)平面\(B_1 EF\),
延长\(BC\),\(B_1 F\)交于\(H\),连接\(EH\)交\(DC\)于\(K\),
\(\because CC_1∥BB_1\),\(F\)为\(CC_1\)中点,
\(\therefore C\)为\(BH\)中点,
\(\because CD∥AB\),\(\therefore KC∥AB\),
\(\therefore K C=\dfrac{1}{2} E B=\dfrac{1}{4} D C\),
\(\because AT∥\)平面\(B_1 EF\),\(AT\subset\)平面\(ABCD\),平面\(B_1 EF\cap\)平面\(ABCD=EK\),
\(\therefore AT∥EK\),
又\(TK∥AE\),
\(\therefore\)四边形\(ATKE\)为平行四边形,
\(\therefore TK=AE=\dfrac{1}{2} DC\),
\(\therefore D T=K C=\dfrac{1}{4} D C\),
\(\therefore\)当\(\dfrac{D T}{D C}=\dfrac{1}{4}\)时,\(AT∥\)平面\(B_1 EF\).
【C组---拓展题】
1.在梯形\(PBCD\)中,\(A\)是\(PB\)的中点,\(DC∥PB\),\(DC⊥CB\),且\(PB=2BC=2DC=4\)(如图\(1\)所示),将三角形\(PAD\)沿\(AD\)翻折,使\(PB=2\)(如图\(2\)所示),\(E\)是线段\(PD\)上的一点,且\(PE=2DE\).
(1)求四棱锥\(P-ABCD\)的体积;
(2)在线段\(AB\)上是否存在一点\(F\),使\(AE∥\)平面\(PCF\)?若存在,请指出点\(F\)的位置并证明,若不存在请说明理由.
参考答案
- 答案 (1) \(\dfrac{4 \sqrt{3}}{3}\); (2) 存在点\(F\),使\(AE∥\)平面\(PCF\),此时 \(A F=\dfrac{2}{3} A B\).
解析 (1)如图所示,过点\(P\)作\(PO⊥AB\)于点\(O\),
\(\because\)在梯形\(PBCD\)有\(AD⊥PA\),\(AD⊥AB\),
\(\therefore\)翻折后仍有\(AD⊥PA\),\(AD⊥AB\),又\(\because PA\cap AB=A\),
\(\therefore AD⊥\)平面\(PAB\),\(\because PO\subset\)平面\(PAB\),
\(\therefore AD⊥PO\),又\(\because PO⊥AB\),\(AD\cap AB=A\),\(AD\subset\)平面\(ABCD\),\(AB\subset\)平面\(ABCD\),
\(\therefore PO⊥\)平面\(ABCD\),
\(\because PA=AB=PB=2\),\(\therefore △PAB\)是等边三角形,
\(\therefore P O=\sqrt{3}\),
\(\therefore V_{P-A B C D}=\dfrac{1}{3} S_{A B C D} \cdot P O=\dfrac{1}{3} \times 2 \times 2 \times \sqrt{3}=\dfrac{4 \sqrt{3}}{3}\),
(2)存在点\(F\),使\(AE∥\)平面\(PCF\),此时 \(A F=\dfrac{2}{3} A B\),理由如下:
过\(E\)作\(EG∥CD\),\(EG\)交\(PC\)于\(G\),
设\(F\)是线段\(AB\)上的一点,且 \(A F=\dfrac{2}{3} A B\),
连接\(FG\),\(PF\),\(CF\),
\(\because PE=2DE\),\(EG∥CD\),
\(\therefore E G=\dfrac{2}{3} C D\),\(EG∥CD\),
又 \(\because A F=\dfrac{2}{3} C D\),\(AF∥CD\),
\(\therefore EG=AF\),\(EG∥AF\),\(\therefore\) 四边形\(AEGF\)是平行四边形,
\(\therefore AE∥GF\),又\(\because AE\not \subset\)平面\(PCF\),\(GF\subset\)平面\(PCF\),
\(\therefore AE∥\)平面\(PCF\).