\({\color{Red}{欢迎到学科网下载资料学习 }}\)
[ 【基础过关系列】高一数学同步精品讲义与分层练习(人教A版2019)]
(https://www.zxxk.com/docpack/2921718.html)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)
必修第二册同步巩固,难度2颗星!
基础知识
平面向量的基本定理
设\(\overrightarrow{e_1}\), \(\overrightarrow{e_2}\)同一平面内的两个不共线向量,\(\vec{a}\)是该平面内任一向量,则存在唯一实数对\((λ,μ)\),使 \(\vec{a}=\lambda \overrightarrow{e_1}+\mu \overrightarrow{e_2}\).
我们把 \(\left\{\overrightarrow{e_1}, \overrightarrow{e_2}\right\}\)叫做表示这个平面内所有向量的一个基底.
如下图, \(\vec{a}=\overrightarrow{O M}+\overrightarrow{O N}=\lambda \overrightarrow{e_1}+\mu \overrightarrow{e_2}\),其中 \(\lambda=\dfrac{|O M|}{|O A|}\), \(\mu=\dfrac{|O N|}{|O B|}\).
解释
(1) 基底\(\left\{\overrightarrow{e_1}, \overrightarrow{e_2}\right\}\)要求\(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)是不共线向量;
(2) 唯一性:若\(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)不共线,且 \(\lambda_1 \overrightarrow{e_1}+\mu_1 \overrightarrow{e_2}=\lambda_2 \overrightarrow{e_1}+\mu_2 \overrightarrow{e_2}\) , 则\(λ_1 =λ_2\) ,\(μ_1=μ_2\).
(3) 平面内任一向量均可由同一个基底唯一表示,这对研究问题带来极大的便利.
基本方法
【题型1】 平面向量的基本定理的理解
【典题1】如果\(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)是平面内一组不共线的向量,那么下列四组向量中,不能作为平面内所有向量的一组基底的是( )
A.\(\overrightarrow{e_1}\)与 \(\overrightarrow{e_1}+\overrightarrow{e_2}\) \(\qquad \qquad \qquad \qquad \qquad\) B.\(\overrightarrow{e_1}-2 \overrightarrow{e_2}\)与 \(\overrightarrow{e_1}+2 \overrightarrow{e_2}\)
C.\(\overrightarrow{e_1}+\overrightarrow{e_2}\)与 \(\overrightarrow{e_1}-\overrightarrow{e_2}\) \(\qquad \qquad \qquad \qquad\) D. \(\overrightarrow{e_1}-2 \overrightarrow{e_2}\)与 \(-\overrightarrow{e_1}+2 \overrightarrow{e_2}\)
解析 \(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)是平面内一组不共线的向量,作为基底的向量,前提为不共线向量,
所以对于选项\(ABC\)都为不共线向量,选项\(D\): \(\overrightarrow{e_1}-2 \overrightarrow{e_2}\)与 \(-\overrightarrow{e_1}+2 \overrightarrow{e_2}\)为共线向量.
故选 \(D\).
点拨 作为基底的两个向量要求不共线.
【巩固练习】
1.若\(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)是平面内的一组基底,则下列四组向量能作为平面向量的基底的是( )
A. \(\overrightarrow{e_1}-\overrightarrow{e_2}\), \(\overrightarrow{e_2}-\overrightarrow{e_1}\) \(\qquad \qquad \qquad \qquad\) B. \(2 \overrightarrow{e_1}-\overrightarrow{e_2}\), \(\overrightarrow{e_1}-\dfrac{1}{2} \overrightarrow{e_2}\)
C. \(\overrightarrow{e_1}+\overrightarrow{e_2}\), \(\overrightarrow{e_1}-\overrightarrow{e_2}\) \(\qquad \qquad \qquad \qquad\) D. \(2 \overrightarrow{e_2}-3 \overrightarrow{e_1}\), \(6 \overrightarrow{e_1}-4 \overrightarrow{e_2}\)
2.如图所示,每个小正方形的边长都是\(1\),则下列说法正确的是( )
A. \(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)是该平面所有向量的一组基, \(\overrightarrow{A D}-\overrightarrow{A B}+\overrightarrow{C B}=\overrightarrow{e_1}+2 \overrightarrow{e_2}\)
B. \(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)是该平面所有向量的一组基, \(\overrightarrow{A D}-\overrightarrow{A B}+\overrightarrow{C B}=2 \overrightarrow{e_1}+\overrightarrow{e_2}\)
C. \(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)不是该平面所有向量的一组基, \(\overrightarrow{A D}-\overrightarrow{A B}+\overrightarrow{C B}=\overrightarrow{e_1}+2 \overrightarrow{e_2}\)
D. \(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)不是该平面所有向量的一组基, \(\overrightarrow{A D}-\overrightarrow{A B}+\overrightarrow{C B}=2 \overrightarrow{e_1}+\overrightarrow{e_2}\)
3.若\(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)是平面α内两个不共线的向量,则下列说法中正确的是( )
A. \(\lambda \overrightarrow{e_1}+\mu \overrightarrow{e_2}(\lambda, \mu \in R)\)不可以表示平面\(α\)内的所有向量
B. 对于平面\(α\)中的任一向量\(\vec{a}\),使\(\vec{a}=\lambda \overrightarrow{e_1}+\mu \overrightarrow{e_2}\)的实数\(λ\),\(μ\)有无数多对
C. 若\(λ_1\),\(μ_1\),\(λ_2\),\(μ_2\)均为实数,且向量\(\lambda_1 \overrightarrow{e_1}+\mu_1 \overrightarrow{e_2}\)与 \(\lambda_2 \overrightarrow{e_1}+\mu_2 \overrightarrow{e_2}\)共线,则有且只有一个实数\(λ\),使 \(\lambda_1 \overrightarrow{e_1}+\mu_1 \overrightarrow{e_2}=\lambda\left(\lambda_2 \overrightarrow{e_1}+\mu_2 \overrightarrow{e_2}\right)\)
D. 若存在实数\(λ\),\(μ\)使\(\lambda \overrightarrow{e_1}+\mu \overrightarrow{e_2}=\overrightarrow{0}\),则 \(\lambda=\mu=0\)
参考答案
-
答案 \(C\)
解析 观察四个选项,对于选项\(A\): \(\overrightarrow{e_1}-\overrightarrow{e_2}=-\left(\overrightarrow{e_2}-\overrightarrow{e_1}\right)\),
故\(\overrightarrow{e_1}-\overrightarrow{e_2}\)与 \(\overrightarrow{e_2}-\overrightarrow{e_1}\)共线,所以不能作为基底;
\(B\), \(2 \overrightarrow{e_1}-\overrightarrow{e_2}=2\left(\overrightarrow{e_1}-\dfrac{1}{2} \overrightarrow{e_2}\right)\),故\(2 \overrightarrow{e_1}-\overrightarrow{e_2}\)与 \(\overrightarrow{e_1}-\dfrac{1}{2} \overrightarrow{e_2}\)线,所以不能作为基底;
\(C\):若\(\overrightarrow{e_1}+\overrightarrow{e_2}\)与\(\overrightarrow{e_1}-\overrightarrow{e_2}\)共线,则 \(\overrightarrow{e_1}+\overrightarrow{e_2}=\lambda\left(\overrightarrow{e_1}-\overrightarrow{e_2}\right)\),可得 \(\left\{\begin{array}{l} \lambda=1 \\ \lambda=-1 \end{array}\right.\),
故不存在\(λ\)使 \(\overrightarrow{e_1}+\overrightarrow{e_2}=\lambda\left(\overrightarrow{e_1}-\overrightarrow{e_2}\right)\),故\(\overrightarrow{e_1}+\overrightarrow{e_2}\)与\(\overrightarrow{e_1}-\overrightarrow{e_2}\)不共线,所以能作为基底;
\(D\), \(-2\left(2 \overrightarrow{e_2}-3 \overrightarrow{e_1}\right)=6 \overrightarrow{e_1}-4 \overrightarrow{e_2}\),故\(2 \overrightarrow{e_2}-3 \overrightarrow{e_1}\)与\(6 \overrightarrow{e_1}-4 \overrightarrow{e_2}\)共线,所以不能作为基底;
故选:\(C\). -
答案 \(A\)
解析 结合题意,平面向量\(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)不共线,是该平面所有向量的一组基底,故\(CD\)错误,
又 \(\because \overrightarrow{A D}-\overrightarrow{A B}+\overrightarrow{C B}=\overrightarrow{A D}-\overrightarrow{A C}=\overrightarrow{C D}=\overrightarrow{e_1}+2 \overrightarrow{e_2}\),
故选:\(A\). -
答案 \(D\)
解析 对于\(A\),因为\(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)是平面α内两个不共线的向量,
所以\(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)可以作为平面中所有向量的一组基底,故\(A\)错误;
对于\(B\),由平面向量基本定理可知,\(B\)错误;
对于\(C\),当\(λ_1=λ_2=μ_1=μ_2=0\)时,这样的\(λ\)有无数个,故\(C\)错误;
故选:\(D\).
【题型2】 平面向量的基本定理的运用
【典题1】 已知在\(△ABC\)中,\(M\),\(N\)分别是边\(AB\)、\(AC\)上的点,且 \(\overrightarrow{A M}=2 \overrightarrow{M B}\), \(\overrightarrow{A N}=3 \overrightarrow{N C}\),\(BN\)与\(CM\)相交于点\(P\),记 \(\vec{a}=\overrightarrow{A B}\), \(\vec{b}=\overrightarrow{A C}\),用\(\vec{a}\),\(\vec{b}\)表示\(\overrightarrow{A P}\)的结果是 .
解析 如图,
由题意,可知 \(\overrightarrow{A M}=\dfrac{2}{3} \overrightarrow{A B}\), \(\overrightarrow{A N}=\dfrac{3}{4} \overrightarrow{A C}\),
设\(\overrightarrow{B P}=\lambda \overrightarrow{B N}\),
则有: \(\overrightarrow{A P}=\overrightarrow{A B}+\overrightarrow{B P}=\overrightarrow{A B}+\lambda \overrightarrow{B N}=\overrightarrow{A B}+\lambda(\overrightarrow{A N}-\overrightarrow{A B})\)
\(=\overrightarrow{A B}+\lambda \overrightarrow{A N}-\lambda \overrightarrow{A B}=(1-\lambda) \overrightarrow{A B}+\lambda \cdot \dfrac{3}{4} \overrightarrow{A C}=(1-\lambda) \vec{a}+\dfrac{3}{4} \lambda \vec{b}\)①
又设 \(\overrightarrow{C P}=\mu \overrightarrow{C M}\),
则有 \(\overrightarrow{A P}=\overrightarrow{A C}+\overrightarrow{C P}=\overrightarrow{A C}+\mu \overrightarrow{C M}=\overrightarrow{A C}+\mu(\overrightarrow{A M}-\overrightarrow{A C})=\overrightarrow{A C}+\mu \overrightarrow{A M}-\mu \overrightarrow{A C}\)
\(=(1-\mu) \overrightarrow{A C}+\mu \cdot \dfrac{2}{3} \overrightarrow{A B}=\dfrac{2}{3} \mu \vec{a}+(1-\mu) \vec{b}\)②
通过比较①②,可得关于\(λ\),\(μ\)的二元一次方程组: \(\left\{\begin{array}{l}
1-\lambda=\dfrac{2}{3} \mu \\
\dfrac{3}{4} \lambda=1-\mu
\end{array}\right.\),
解此二元一次方程组,得 \(\left\{\begin{array}{l}
\lambda=\dfrac{2}{3} \\
\mu=\dfrac{1}{2}
\end{array}\right.\),
将结果带入①式,可得: \(\overrightarrow{A P}=\dfrac{1}{3} \vec{a}+\dfrac{1}{2} \vec{b}\),
故选:\(D\).
点拨
1.若\(\overrightarrow{e_1}\), \(\overrightarrow{e_2}\)不共线,且 \(\lambda_1 \overrightarrow{e_1}+\mu_1 \overrightarrow{e_2}=\lambda_2 \overrightarrow{e_1}+\mu_2 \overrightarrow{e_2}\),则\(λ_1 =λ_2\) ,\(μ_1=μ_2\).
2.向量 \(\overrightarrow{A P}\)用同一基底 \(\vec{a}\), \(\vec{b}\)以两种方式表示 \(\overrightarrow{A P}=(1-\lambda) \vec{a}+\dfrac{3}{4} \lambda \vec{b}=\dfrac{2}{3} \mu \vec{a}+(1-\mu) \vec{b}\),由平面向量基本定理的唯一性求出\(λ\),\(μ\),得到\(\overrightarrow{A P}=\dfrac{1}{3} \vec{a}+\dfrac{1}{2} \vec{b}\).
【典题2】如图,在平行四边形\(ABCD\)中,\(E\),\(F\)分别为\(BC\),\(CD\)的中点,且 \(\overrightarrow{A F} \cdot \overrightarrow{D E}=4\), \(\overrightarrow{A E} \cdot \overrightarrow{B F}=-1\),则 \(\overrightarrow{A C} \cdot \overrightarrow{B D}=\) .
解析 \(\because \overrightarrow{A F}=\overrightarrow{A D}+\overrightarrow{D F}=\overrightarrow{A D}+\dfrac{1}{2} \overrightarrow{D C}=\overrightarrow{A D}+\dfrac{1}{2} \overrightarrow{A B}\),
\(\overrightarrow{D E}=\overrightarrow{D C}+\overrightarrow{C E}=\overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{C B}=\overrightarrow{A B}-\dfrac{1}{2} \overrightarrow{A D}\),
\(\therefore\left(\overrightarrow{A D}+\dfrac{1}{2} \overrightarrow{A B}\right) \cdot\left(\overrightarrow{A B}-\dfrac{1}{2} \overrightarrow{A D}\right)=4\),
即 \(\dfrac{3}{4} \overrightarrow{A B} \cdot \overrightarrow{A D}+\dfrac{1}{2} \overrightarrow{A B}^2-\dfrac{1}{2} \overrightarrow{A D}^2=4\) ①,
\(\because \overrightarrow{A E}=\overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{A D}\),\(\overrightarrow{B F}=\overrightarrow{B C}+\overrightarrow{C F}=\overrightarrow{A D}+\dfrac{1}{2} \overrightarrow{C D}=\overrightarrow{A D}-\dfrac{1}{2} \overrightarrow{A B}\)
\(\therefore\left(\overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{A D}\right) \cdot\left(\overrightarrow{A D}-\dfrac{1}{2} \overrightarrow{A B}\right)=-1\),
即 \(\dfrac{3}{4} \overrightarrow{A B} \cdot \overrightarrow{A D}-\dfrac{1}{2} \overrightarrow{A B}^2+\dfrac{1}{2} \overrightarrow{A D}^2=-1\) ②,
由①-②得, \(\overrightarrow{A B}^2-\overrightarrow{A D}^2=5\),
\(\therefore \overrightarrow{A C} \cdot \overrightarrow{B D}=(\overrightarrow{A D}+\overrightarrow{A B}) \cdot(\overrightarrow{A D}-\overrightarrow{A B})=\overrightarrow{A D}^2-\overrightarrow{A B}^2=-5\).
故答案为:\(-5\).
点拨 本题直接使用数量积的定义处理显然不行,选择正确基底\(\overrightarrow{A B}\), \(\overrightarrow{A D}\),其他向量用基底表示,则可把问题转化为基底的问题.
【巩固练习】
1.在\(△ABC\)中,点\(D\)在\(BC\)边上,且\(BD=DC\),点\(E\)在\(AC\)边上,且\(A E=\dfrac{4}{5} A C\),连接\(DE\),若 \(\overrightarrow{D E}=m \overrightarrow{A B}+n \overrightarrow{A C}\),则\(m+n=\)( )
A. \(-\dfrac{1}{5}\) \(\qquad \qquad \qquad \qquad\) B. \(\dfrac{4}{5}\) \(\qquad \qquad \qquad \qquad\) C. \(-\dfrac{4}{5}\) \(\qquad \qquad \qquad \qquad\) D. \(\dfrac{1}{5}\)
2.在三角形\(ABC\)中,若 \(|\overrightarrow{A B}+\overrightarrow{B C}|=|\overrightarrow{A B}-\overrightarrow{B C}|\),\(AC=6\),\(AB=3\),\(E\),\(F\)为\(BC\)边的三等分点,则 \(\overrightarrow{A E} \cdot \overrightarrow{A F}=\)( )
A.\(21\) \(\qquad \qquad \qquad \qquad\) B.\(18\) \(\qquad \qquad \qquad \qquad\) C.\(15\) \(\qquad \qquad \qquad \qquad\) D.\(12\)
3.如图,在\(△ABC\)中, \(\overrightarrow{A N}=\dfrac{1}{3} \overrightarrow{A C}\),\(P\)是\(BN\)上的一点,若 \(\overrightarrow{A P}=m \overrightarrow{A B}+\dfrac{2}{13} \overrightarrow{A C}\),则实数\(m\)的值为\(\underline{\quad \quad}\) .
4.如图,在\(▱OACB\)中,\(E\)是\(AC\)的中点,\(F\)是\(BC\)上的一点,且\(BC=3BF\),若\(\overrightarrow{O C}=m \overrightarrow{O E}+n \overrightarrow{O F}\),其中\(m,n∈R\),则\(m+n\)的值为\(\underline{\quad \quad}\) .
参考答案
-
答案 \(A\)
解析 由题意得 \(\overrightarrow{D E}=\overrightarrow{D A}+\overrightarrow{A E}=-\dfrac{1}{2}(\overrightarrow{A B}+\overrightarrow{A C})+\dfrac{4}{5} \overrightarrow{A C}=-\dfrac{1}{2} \overrightarrow{A B}+\dfrac{3}{10} \overrightarrow{A C}\),
\(\therefore m=-\dfrac{1}{2}\), \(n=\dfrac{3}{10}\), \(m+n=-\dfrac{1}{5}\).
故选:\(A\). -
答案 \(C\)
解析 若\(|\overrightarrow{A B}+\overrightarrow{B C}|=|\overrightarrow{A B}-\overrightarrow{B C}|\),
则\(\overrightarrow{A B}^2+\overrightarrow{B C^2}+2 \overrightarrow{A B} \cdot \overrightarrow{B C}=\overrightarrow{A B}^2+\overrightarrow{B C}^2-2 \overrightarrow{A B} \cdot \overrightarrow{B C}\),即有 \(\overrightarrow{A B} \cdot \overrightarrow{B C}=0\),
\(∵AC=6\),\(AB=3\),\(∴BC^2=6^2-3^2=27\).
\(∵E\),\(F\)为\(BC\)边的三等分点,
则 \(\overrightarrow{A E} \cdot \overrightarrow{A F}=(\overrightarrow{A B}+\overrightarrow{B E})(\overrightarrow{A B}+\overrightarrow{B F})=\left(\overrightarrow{A B}+\dfrac{1}{3} \overrightarrow{B C}\right)\left(\overrightarrow{A B}+\dfrac{2}{3} \overrightarrow{B C}\right)\)
\(=\dfrac{2}{9} \overrightarrow{B C}^2+\overrightarrow{A B^2}+\overrightarrow{A B} \cdot \overrightarrow{B C}=\dfrac{2}{9} \times 27+3^2+0=15\).
故选:\(C\). -
答案 \(\dfrac{7}{13}\)
解析 因为\(\overrightarrow{A N}=\dfrac{1}{3} \overrightarrow{A C}\),所以\(3 \overrightarrow{A N}=\overrightarrow{A C}\),
又因为\(\overrightarrow{A P}=m \overrightarrow{A B}+\dfrac{2}{13} \overrightarrow{A C}\),所以 \(\overrightarrow{A P}=m \overrightarrow{A B}+\dfrac{6}{13} \overrightarrow{A N}\),
又因为\(B\),\(P\),\(N\)三点共线,
所以 \(\overrightarrow{B P}=\lambda \overrightarrow{B N}(\lambda \neq 0)\),
即\(\overrightarrow{A P}-\overrightarrow{A B}=\lambda(\overrightarrow{A N}-\overrightarrow{A B})(\lambda \neq 0)\),
所以\(\overrightarrow{A P}=\lambda \overrightarrow{A N}+(1-\lambda) \overrightarrow{A B}(\lambda \neq 0)\),
所以 \(\left\{\begin{array}{l} \lambda=\dfrac{6}{13} \\ m=1-\lambda \end{array}\right.\),解得\(m=\dfrac{7}{13}\). -
答案 \(\dfrac{7}{5}\)
解析 因为 \(\overrightarrow{O F}=\overrightarrow{O B}+\overrightarrow{B F}=\overrightarrow{O B}+\dfrac{1}{3} \overrightarrow{O A}, \overrightarrow{O E}=\overrightarrow{O A}+\overrightarrow{A E}=\overrightarrow{O A}+\dfrac{1}{2} \overrightarrow{O B}\),
所以 \(\overrightarrow{O A}=\dfrac{6}{5} \overrightarrow{O E}-\dfrac{3}{5} \overrightarrow{O F}\),\(\overrightarrow{O B}=\dfrac{6}{5} \overrightarrow{O F}-\dfrac{2}{5} \overrightarrow{O E}\),
又\(\overrightarrow{O C}=\overrightarrow{O A}+\overrightarrow{O B}=\dfrac{6}{5} \overrightarrow{O E}-\dfrac{3}{5} \overrightarrow{O F}+\dfrac{6}{5} \overrightarrow{O F}-\dfrac{2}{5} \overrightarrow{O E}=\dfrac{4}{5} \overrightarrow{O E}+\dfrac{3}{5} \overrightarrow{O F}\),
所以 \(m=\dfrac{4}{5}\), \(n=\dfrac{3}{5}\),故 \(m+n=\dfrac{7}{5}\).
分层练习
【A组---基础题】
1.设\(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)是平面内所有向量的一组基底,则下面四组向量中,不能作为基底的是( )
A.\(\vec{e}_1+\vec{e}_2\)和 \(\vec{e}_1-3 \vec{e}_2\) \(\qquad \qquad \qquad \qquad \qquad\) B.\(\vec{e}_1+6 \vec{e}_2\)和 \(\vec{e}_1+\vec{e}_2\)
C. \(3 \vec{e}_1-4 \vec{e}_2\)和 \(6 \vec{e}_1-8 \vec{e}_2\) \(\qquad \qquad \qquad \qquad\) D. \(\vec{e}_1+2 \vec{e}_2\)和 \(2 \vec{e_1}-\vec{e_2}\)
2.在\(△ABC\)中,点\(D\)满足\(\overrightarrow{B D}=2 \overrightarrow{C D}\).记 \(\overrightarrow{A B}=\vec{a}\), \(\overrightarrow{A C}=\vec{b}\),则 \(\overrightarrow{A D}=\)( )
A. \(-\dfrac{1}{2} \vec{a}+\dfrac{3}{2} \vec{b}\) \(\qquad \qquad\) B. \(\dfrac{1}{3} \vec{a}+\dfrac{2}{3} \vec{b}\) \(\qquad \qquad\) C. \(-\vec{a}+2 \vec{b}\) \(\qquad \qquad\) D. \(\dfrac{1}{2} \vec{a}+\dfrac{1}{2} \vec{b}\)
3.如图,在四边形\(ABCD\)中,\(E\),\(F\)分别为\(AB\),\(CD\)的中点,若 \(\overrightarrow{A D}=\vec{a}\), \(\overrightarrow{B C}=\vec{b}\),则 \(\overrightarrow{E F}\)( )
A. \(\dfrac{1}{2} \vec{a}+\dfrac{1}{2} \vec{b}\) \(\qquad \qquad\) B. \(\dfrac{1}{2} \vec{a}-\dfrac{1}{2} \vec{b}\) \(\qquad \qquad\) C. \(\dfrac{1}{2} \vec{a}+\dfrac{3}{2} \vec{b}\) \(\qquad \qquad\) D. \(\dfrac{1}{2} \vec{a}-\dfrac{3}{2} \vec{b}\)
4.如图,在\(△ABC\)中, \(\overrightarrow{B M}=\lambda \overrightarrow{B C}\), \(\overrightarrow{N C}=\mu \overrightarrow{A C}\),直线\(AM\)交\(BN\)于点\(Q\), \(\overrightarrow{B Q}=\dfrac{2}{3} \overrightarrow{B N}\),则( )
A.\(λ+μ=1\) \(\qquad \qquad \qquad\) B. \(\lambda \mu=\dfrac{1}{4}\) \(\qquad \qquad\) C.\((λ-1)(2μ-3)=1\) \(\qquad \qquad\) D.\((2λ-3)(μ-1)=1\)
5.如图,在\(△ABC\)中, \(\overrightarrow{A D}=\dfrac{1}{4} \overrightarrow{A B}\), \(\overrightarrow{A E}=\dfrac{1}{2} \overrightarrow{A C}\),\(BE\)和\(CD\)相交于点\(F\),则向量\(\overrightarrow{A F}\)等于( )
A. \(\dfrac{1}{7} \overrightarrow{A B}+\dfrac{2}{7} \overrightarrow{A C}\) \(\qquad \qquad \qquad \qquad\) B. \(\dfrac{1}{7} \overrightarrow{A B}+\dfrac{3}{7} \overrightarrow{A C}\)
C.\(\dfrac{1}{14} \overrightarrow{A B}+\dfrac{2}{14} \overrightarrow{A C}\) \(\qquad \qquad \qquad \qquad\) D. \(\dfrac{1}{14} \overrightarrow{A B}+\dfrac{3}{14} \overrightarrow{A C}\)
6.如图,在\(△ABC\)中, \(\angle B A C=\dfrac{\pi}{3}\), \(\overrightarrow{A D}=2 \overrightarrow{D B}\),\(P\)为\(CD\)上一点,且满足 \(\overrightarrow{A P}=m \overrightarrow{A C}+\dfrac{1}{2} \overrightarrow{A B}\),若\(AC=3\),\(AB=4\),则\(\overrightarrow{A P} \cdot \overrightarrow{C D}\)的值为 \(\underline{\quad \quad}\) .
7.如图,在\(△ABC\)中, \(\overrightarrow{A N}=\dfrac{1}{2} \overrightarrow{A C}\),\(P\)是\(BN\)的中点,若 \(\overrightarrow{A P}=m \overrightarrow{A B}+n \overrightarrow{A C}\),则\(m+n=\) \(\underline{\quad \quad}\) .
8.如图,在长方形\(ABCD\)中,\(M\), \(N\) 分别为线段\(BC\),\(CD\)的中点,若 \(\overrightarrow{M N}=\lambda \overrightarrow{A M}+\mu \overrightarrow{B N}\),\(λ\),\(μ∈R\),则\(λ+μ=\) \(\underline{\quad \quad}\).
9.如图,过\(△ABC\)的重心\(G\)的直线分别交边\(AB\)、\(AC\)于\(P\)、\(Q\)两点,且\(\overrightarrow{A B}=x \overrightarrow{A P}\), \(\overrightarrow{A C}=y \overrightarrow{A Q}\),则\(xy\)的取值范围是\(\underline{\quad \quad}\).
参考答案
-
答案 \(C\)
解析 ∵\(\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)是平面内所有向量的一组基底,\(∴\overrightarrow{e_1}\),\(\overrightarrow{e_2}\)不共线,
\(∴\vec{e}_1+\vec{e}_2\)和 \(\vec{e}_1-3 \vec{e}_2\)不共线,\(\vec{e}_1+6 \vec{e}_2\)和 \(\vec{e}_1+\vec{e}_2\)不共线, \(\vec{e}_1+2 \vec{e}_2\)和 \(2 \vec{e_1}-\vec{e_2}\)不共线,
\(6 \vec{e}_1-8 \vec{e}_2=2\left(3 \vec{e}_1-4 \vec{e}_2\right)\),
故\(3 \vec{e}_1-4 \vec{e}_2\)和 \(6 \vec{e}_1-8 \vec{e}_2\)共线,
故选:\(C\). -
答案 \(C\)
解析 由题意可得, \(2 \overrightarrow{A C}=\overrightarrow{A D}+\overrightarrow{A B}\),故 \(\overrightarrow{A D}=2 \overrightarrow{A C}-\overrightarrow{A B}=2 \vec{b}-\vec{a}\).故选:\(C\). -
答案 \(A\)
解析 由题意知 \(\overrightarrow{E F}=\overrightarrow{E B}+\overrightarrow{B C}+\overrightarrow{C F}\), \(\overrightarrow{E F}=\overrightarrow{E A}+\overrightarrow{A D}+\overrightarrow{D F}\),
因为\(E\),\(F\)分别为\(AB\),\(CD\)的中点,
所以\(\overrightarrow{E B}=-\overrightarrow{E A}\),\(\overrightarrow{D F}=-\overrightarrow{C F}\)
所以 \(2 \overrightarrow{E F}=\overrightarrow{A D}+\overrightarrow{B C}\),
所以 \(\overrightarrow{E F}=\dfrac{1}{2} \overrightarrow{A D}+\dfrac{1}{2} \overrightarrow{B C}\),
因为\(\overrightarrow{A D}=\vec{a}\), \(\overrightarrow{B C}=\vec{b}\),
所以 \(\overrightarrow{E F}=\dfrac{1}{2} \vec{a}+\dfrac{1}{2} \vec{b}\).
故选:\(A\). -
答案 \(C\)
解析 \(\overrightarrow{B Q}=\dfrac{2}{3} \overrightarrow{B N}=\dfrac{2}{3}(\overrightarrow{B A}+\overrightarrow{A N})=\dfrac{2}{3}[\overrightarrow{B A}+(1-\mu) \overrightarrow{A C}]=\dfrac{2}{3}[\overrightarrow{B A}+(1-\mu)(\overrightarrow{B C}-\overrightarrow{B A})]\)
\(=\dfrac{2}{3}[\mu \overrightarrow{B A}+(1-\mu) \overrightarrow{B C}]=\dfrac{2}{3} \mu \overrightarrow{B A}+\dfrac{2}{3} \cdot \dfrac{(1-\mu)}{\lambda} \overrightarrow{B M}\),
\(∵Q\),\(M\),\(A\)三点共线,
\(\therefore \dfrac{2}{3} \mu+\dfrac{2}{3} \cdot \dfrac{1-\mu}{\lambda}=1\),化简整理得\((λ-1)(2μ-3)=1\).
故选:\(C\). -
答案 \(B\)
解析 设 \(\overrightarrow{C F}=k \overrightarrow{C D}=k(\overrightarrow{A D}-\overrightarrow{A C})=k\left(\dfrac{1}{4} \overrightarrow{A B}-\overrightarrow{A C}\right)\),
\(\because \overrightarrow{B F}=\overrightarrow{B C}+\overrightarrow{C F}=k\left(\dfrac{1}{4} \overrightarrow{A B}-\overrightarrow{A C}\right)+\overrightarrow{A C}-\overrightarrow{A B}=\left(\dfrac{1}{4} k-1\right) \overrightarrow{A B}+(1-k) \overrightarrow{A C}\),
\(\overrightarrow{B E}=\overrightarrow{A E}-\overrightarrow{A B}=\dfrac{1}{2} \overrightarrow{A C}-\overrightarrow{A B}\).
\(\because \overrightarrow{B F} \| \overrightarrow{B E}\),
\(\therefore \overrightarrow{B F}=\lambda \overrightarrow{B E}\),则 \(\left(\dfrac{1}{4} k-1\right) \overrightarrow{A B}+(1-k) \overrightarrow{A C}=\lambda\left(\dfrac{1}{2} \overrightarrow{A C}-\overrightarrow{A B}\right)\).
\(\therefore\left\{\begin{array}{l} \dfrac{1}{4} k-1=-\lambda \\ 1-k=\dfrac{1}{2} \lambda \end{array}\right.\), \(\therefore k=\dfrac{4}{7}\), \(\overrightarrow{C F}=\dfrac{1}{7} \overrightarrow{A B}-\dfrac{4}{7} \overrightarrow{A C}\),
\(\therefore \overrightarrow{A F}=\overrightarrow{A C}+\overrightarrow{C F}=\dfrac{1}{7} \overrightarrow{A B}+\dfrac{3}{7} \overrightarrow{A C}\).
故选:\(B\). -
答案 \(\dfrac{13}{12}\)
解析 \(\because \overrightarrow{A D}=2 \overrightarrow{D B}\), \(\therefore \overrightarrow{A D}=\dfrac{2}{3} \overrightarrow{A B}\),
\(\because \overrightarrow{C P} \| \overrightarrow{C D}\), \(\therefore \overrightarrow{C P}=k \overrightarrow{C D}\),即 \(\overrightarrow{A P}-\overrightarrow{A C}=k(\overrightarrow{A D}-\overrightarrow{A C})\),
又\(\because \overrightarrow{A P}=m \overrightarrow{A C}+\dfrac{1}{2} \overrightarrow{A B}\),则 \((m-1) \overrightarrow{A C}+\dfrac{1}{2} \overrightarrow{A B}=k\left(\dfrac{2}{3} \overrightarrow{A B}-\overrightarrow{A C}\right)\),
\(\therefore\left\{\begin{array}{l} m-1=-k \\ \dfrac{1}{2}=\dfrac{2}{3} k \end{array}\right.\), \(\therefore k=\dfrac{3}{4}\), \(m=\dfrac{1}{4}\),
则 \(\overrightarrow{A P} \cdot \overrightarrow{C D}=\overrightarrow{A P} \cdot(\overrightarrow{A D}-\overrightarrow{A C})=\left(\dfrac{1}{4} \overrightarrow{A C}+\dfrac{1}{2} \overrightarrow{A B}\right) \cdot\left(\dfrac{2}{3} \overrightarrow{A B}-\overrightarrow{A C}\right)\)
\(=\dfrac{1}{3} \overrightarrow{A B}-\dfrac{1}{4} \overrightarrow{A C^2}-\dfrac{1}{3} \overrightarrow{A B} \cdot \overrightarrow{A C}=\dfrac{16}{3}-\dfrac{9}{4}-\dfrac{1}{3} \times 4 \times 3 \cos \dfrac{\pi}{3}=\dfrac{13}{12}\). -
答案 \(\dfrac{3}{4}\)
解析 \(∵\)在\(△ABC\)中,\(\overrightarrow{A N}=\dfrac{1}{2} \overrightarrow{A C}\),\(P\)是\(BN\)的中点,
\(\therefore \overrightarrow{A P}=\dfrac{1}{2} \overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{A N}=\dfrac{1}{2} \overrightarrow{A B}+\dfrac{1}{4} \overrightarrow{A C}\),
\(\therefore m=\dfrac{1}{2}\), \(n=\dfrac{1}{4}\), \(\therefore m+n=\dfrac{3}{4}\). -
答案 \(\dfrac{2}{5}\)
解析 在长方形\(ABCD\)中,向量\(\overrightarrow{A B}\),\(\overrightarrow{A D}\)不共线,\(M\),\(N\) 分别为线段\(BC\),\(CD\)的中点,
则有\(\overrightarrow{A M}=\overrightarrow{A B}+\overrightarrow{B M}=\overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{A D}\), \(\overrightarrow{B N}=\overrightarrow{B C}+\overrightarrow{C N}=-\dfrac{1}{2} \overrightarrow{A B}+\overrightarrow{A D}\),
\(\overrightarrow{M N}=\overrightarrow{M C}+\overrightarrow{C N}=-\dfrac{1}{2} \overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{A D}\), 因 \(\overrightarrow{M N}=\lambda \overrightarrow{A M}+\mu \overrightarrow{B N}\),
则有 \(-\dfrac{1}{2} \overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{A D}=\lambda\left(\overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{A D}\right)+\mu\left(-\dfrac{1}{2} \overrightarrow{A B}+\overrightarrow{A D}\right)\)\(=\left(\lambda-\dfrac{1}{2} \mu\right) \overrightarrow{A B}+\left(\dfrac{1}{2} \lambda+\mu\right) \overrightarrow{A D}\),
于是得 \(\left\{\begin{array}{l} \lambda-\dfrac{1}{2} \mu=-\dfrac{1}{2} \\ \dfrac{1}{2} \lambda+\mu=\dfrac{1}{2} \end{array}\right.\),解得\(\lambda=-\dfrac{1}{5}\), \(\mu=\dfrac{3}{5}\),
所以 \(\lambda+\mu=\dfrac{2}{5}\). -
答案 \(\left[2, \dfrac{9}{4}\right]\)
解析 \(∵P\),\(G\),\(Q\)三点共线,\(∴\)存在\(m\),使 \(\overrightarrow{A G}=m \overrightarrow{A Q}+(1-m) \overrightarrow{A P}\),
又\(∵G\)是\(△ABC\)的重心,
\(\therefore \overrightarrow{A G}=\dfrac{1}{3}(\overrightarrow{A B}+\overrightarrow{A C})=\dfrac{1}{3}(y \overrightarrow{A Q}+x \overrightarrow{A P})\),
\(\therefore \dfrac{1}{3}(y \overrightarrow{A Q}+x \overrightarrow{A P})=m \overrightarrow{A Q}+(1-m) \overrightarrow{A P}\),
\(∴x+y=3\),
又 \(\because \overrightarrow{A B}=x \overrightarrow{A P}\),
\(∴1≤x≤2\),
故 \(x y=x(3-x)=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{9}{4}\),
故 \(2 \leq-\left(x-\dfrac{3}{2}\right)^2+\dfrac{9}{4} \leq \dfrac{9}{4}\),
故答案为:\(\left[2, \dfrac{9}{4}\right]\).
【B组---提高题】
1.(多选)设\(\vec{a}\)是已知的平面向量,向量\(\vec{a}\),\(\vec{b}\), \(\vec{c}\)在同一平面内且两两不共线,下列说法正确的是( )
A. 给定向量\(\vec{b}\),总存在向量\(\vec{c}\),使 \(\vec{a}=\vec{b}+\vec{c}\)
B. 给定向量\(\vec{b}\)和\(\vec{c}\),总存在实数\(λ\)和\(μ\),使 \(\vec{a}=\lambda \vec{b}+\mu \vec{c}\)
C. 给定单位向量\(\vec{b}\)和正数μ,总存在单位向量\(\vec{c}\)和实数\(λ\),使 \(\vec{a}=\lambda \vec{b}+\mu \vec{c}\)
D. 若 \(|\vec{a}|=2\),存在单位向量\(\vec{b}\),\(\vec{c}\)和正实数\(λ\),\(μ\),使 \(\vec{a}=\lambda \vec{b}+\mu \vec{c}\),则\(λ+μ>2\)
2.在\(△ABC\)内使\(AP^2+BP^2+CP^2\)的值最小的点\(P\)是\(△ABC\)的( )
A.外心 \(\qquad \qquad \qquad \qquad\) B.内心 \(\qquad \qquad \qquad \qquad\) C.垂心 \(\qquad \qquad \qquad \qquad\) D.重心
参考答案
-
答案 \(ABD\)
解析 对于选项\(A\),给定向量\(\vec{a}\)和\(\vec{b}\),只需求得其向量差 \(\vec{a}-\vec{b}\)即为所求的向量\(\vec{c}\),
故总存在向量\(\vec{c}\),使\(\vec{a}=\vec{b}+\vec{c}\),故\(A\)正确;
对于选项\(B\),当向量\(\vec{b}\),\(\vec{c}\)和\(\vec{a}\)在同一平面内且两两不共线时,向量\(\vec{b}\),\(\vec{c}\)可作基底,
由平面向量基本定理可知结论成立,故\(B\)正确;
对于选项\(C\),取\(\vec{a}=(4,4)\), \(\mu=2\), \(\vec{b}=(1,0)\)无论\(λ\)取何值,向量\(\lambda \vec{b}\)都平行于\(x\)轴,
而向量\(\mu \vec{c}\)的模恒等于\(2\),要使 \(\vec{a}=\lambda \vec{b}+\mu \vec{c}\)成立,根据平行四边形法则,向量\(\mu \vec{c}\)的纵坐标一定为\(4\),
故找不到这样的单位向量\(\vec{c}\)使等式成立,故\(C\)错误;
对于选项\(D\), \(\because|\vec{a}|=(\lambda \vec{b}+\mu \vec{c})^2=\lambda^2+\mu^2+2 \lambda \mu \cos \langle\vec{b}, \vec{c}>=4\),又\(\vec{b}\),\(\vec{c}\)不共线,
\(∴λ^2+μ^2+2λμ>4\),即\((λ+μ)^2>4\),即\(λ+μ>2\),故\(D\)正确
故选:\(ABD\). -
答案 \(D\)
解析 令 \(\overrightarrow{C A}=\vec{a}\),\(\overrightarrow{C B}=\vec{b}\),设 \(\overrightarrow{C P}=\vec{m}\),则 \(\overrightarrow{A P}=\vec{m}-\vec{a}\), \(\overrightarrow{B P}=\vec{m}-\vec{b}\),
于是 \(A P^2+B P^2+C P^2=\overrightarrow{A P^2}+\overrightarrow{B P^2}+\overrightarrow{C P^2}=(\vec{m}-\vec{a})^2+(\vec{m}-\vec{b})^2+\vec{m}^2\)
\(=3 \vec{m}^2-2(\vec{a}+\vec{b}) \cdot \vec{m}+\vec{a}^2+\vec{b}^2=3\left[\vec{m}-\dfrac{1}{3}(\vec{a}+\vec{b})\right]^2-\dfrac{1}{3}(\vec{a}+\vec{b})^2+\vec{a}^2+\vec{b}^2\).
所以当\(\vec{m}=\dfrac{1}{3}(\vec{a}+\vec{b})\)时,\(AP^2+BP^2+CP^2\)最小,
设\(AB\)的中点为\(D\),
\(\because \vec{m}=\dfrac{1}{3}(\vec{a}+\vec{b})\), \(\therefore 3 \vec{m}=\vec{a}+\vec{b} \Rightarrow \dfrac{3}{2} \vec{m}=\dfrac{\vec{a}+\vec{b}}{2} \Rightarrow \dfrac{3}{2} \vec{m}=\overrightarrow{C D}\),
\(∴\)点\(P\)在边\(AB\)的中线上,同理点\(P\)在边\(AC\)、\(BC\)的中线上
\(∴\)点\(P\)为\(△ABC\)的重心.
故选 \(D\).