文章目录
条件分布
离散型随机变量的条件分布
- 设 ( X , Y ) (X, Y) (X,Y)是二维离散型随机向量,对于固定的 y j y_{j} yj,若 P { Y = y j } > 0 P\set{Y = y_{j}} > 0 P{Y=yj}>0,则称 P { X = x i ∣ Y = y j } = P { X = x i , Y = y j } P { Y = y j } = p i j p ⋅ j , i = 1 , 2 , ⋯ P\set{X = x_{i} | Y = y_{j}} = \frac{P\set{X = x_{i} , Y = y_{j}}}{P\set{Y = y_{j}}} = \frac{p_{ij}}{p_{\cdot j}} , i = 1, 2, \cdots P{X=xi∣Y=yj}=P{Y=yj}P{X=xi,Y=yj}=p⋅jpij,i=1,2,⋯为在 { Y = y j } \set{Y = y_{j}} {Y=yj}的条件下,随机变量 X X X的条件分布律,称函数 F ( x ∣ y j ) = P { X ≤ x ∣ Y = y j } , x ∈ R F(x | y_{j}) = P\set{X \leq x | Y = y_{j}} , x \in R F(x∣yj)=P{X≤x∣Y=yj},x∈R为在 { Y = y j } \set{Y = y_{j}} {Y=yj}的条件下,随机变量 X X X的条件分布函数
示例
问题
- 一射手进行射击,每次击中目标的概率为 p ( 0 < p < 1 ) p (0 < p < 1) p(0<p<1),且各次射击是相互独立的,射击进行到击中目标两次为止,以 X X X表示首次击中目标所进行的射击次数,以 Y Y Y表示总共进行的射击次数,试求 X X X和 Y Y Y的联合概率分布律及条件概率分布律
解答
- 设 { Y = n } \set{Y = n} {Y=n}表示在第 n n n次射击时击中目标,且在前 n − 1 n - 1 n−1次射击中有一次击中目标
- 已知各次射击是相互独立的,于是不论 m ( m < n ) m (m < n) m(m<n)是多少,概率 P { X = m , Y = n } P\set{X = m , Y = n} P{X=m,Y=n}都应等于 p 2 ( 1 − p ) n − 2 p^{2} (1 - p)^{n - 2} p2(1−p)n−2,由此得 X X X和 Y Y Y的联合概率分布律为
P { X = m , Y = n } = p 2 ( 1 − p ) n − 2 , n = 2 , 3 , ⋯ , m = 1 , 2 , ⋯ , n − 1 P\set{X = m , Y = n} = p^{2} (1 - p)^{n - 2} , n = 2, 3, \cdots , m = 1, 2, \cdots, n - 1 P{X=m,Y=n}=p2(1−p)n−2,n=2,3,⋯,m=1,2,⋯,n−1
P { X = m } = ∑ n = m + 1 ∞ P { X = m , Y = n } = ∑ n = m + 1 ∞ p 2 ( 1 − p ) n − 2 = p 2 ∑ n = m + 1 ∞ ( 1 − p ) n − 2 = p 2 ( 1 − p ) m − 1 p = p ( 1 − p ) m − 1 , m = 1 , 2 , ⋯ P\set{X = m} = \sum\limits_{n = m + 1}^{\infty}{P\set{X = m , Y = n}} = \sum\limits_{n = m + 1}^{\infty}{p^{2} (1 - p)^{n - 2}} = p^{2} \sum\limits_{n = m + 1}^{\infty}{(1 - p)^{n - 2}} = \frac{p^{2} (1 - p)^{m - 1}}{p} = p (1 - p)^{m - 1} , m = 1, 2, \cdots P{X=m}=n=m+1∑∞P{X=m,Y=n}=n=m+1∑∞p2(1−p)n−2=p2n=m+1∑∞(1−p)n−2=pp2(1−p)m−1=p(1−p)m−1,m=1,2,⋯
P { Y = n } = ∑ m = 1 n − 1 P { X = m , Y = n } = ∑ m = 1 n − 1 p 2 ( 1 − p ) n − 2 = ( n − 1 ) p 2 ( 1 − p ) n − 2 , n = 2 , 3 , ⋯ P\set{Y = n} = \sum\limits_{m = 1}^{n - 1}{P\set{X = m , Y = n}} = \sum\limits_{m = 1}^{n - 1}{p^{2} (1 - p)^{n - 2}} = (n - 1) p^{2} (1 - p)^{n - 2} , n = 2, 3, \cdots P{Y=n}=m=1∑n−1P{X=m,Y=n}=m=1∑n−1p2(1−p)n−2=(n−1)p2(1−p)n−2,n=2,3,⋯
- 当 n = 2 , 3 , ⋯ n = 2, 3, \cdots n=2,3,⋯时, P { X = m ∣ Y = n } = p 2 ( 1 − p ) n − 2 ( n − 1 ) p 2 ( 1 − p ) n − 2 = 1 n − 1 , m = 1 , 2 , ⋯ , n − 1 P\set{X = m | Y = n} = \frac{p^{2} (1 - p)^{n - 2}}{(n - 1) p^{2} (1 - p)^{n - 2}} = \frac{1}{n - 1} , m = 1, 2, \cdots, n - 1 P{X=m∣Y=n}=(n−1)p2(1−p)n−2p2(1−p)n−2=n−11,m=1,2,⋯,n−1
- 当 m = 1 , 2 , ⋯ m = 1, 2, \cdots m=1,2,⋯时, P { Y = n ∣ X = m } = p 2 ( 1 − p ) n − 2 p ( 1 − p ) m − 1 = p ( 1 − p ) n − m − 1 , n = m + 1 , m + 2 , ⋯ P\set{Y = n | X = m} = \frac{p^{2} (1 - p)^{n - 2}}{p (1 - p)^{m - 1}} = p (1 - p)^{n - m - 1} , n = m + 1, m + 2, \cdots P{Y=n∣X=m}=p(1−p)m−1p2(1−p)n−2=p(1−p)n−m−1,n=m+1,m+2,⋯
连续型随机变量的条件分布
- 设 ( X , Y ) (X, Y) (X,Y)为二维连续型随机向量, y y y取定值,对于任意给定的实数 Δ y > 0 , P { y < Y ≤ y + Δ y } > 0 \Delta{y} > 0 , P\set{y < Y \leq y + \Delta{y}} > 0 Δy>0,P{y<Y≤y+Δy}>0,若极限 lim Δ y → 0 + P { X ≤ x ∣ y < Y ≤ y + Δ y } \lim\limits_{\Delta{y} \rightarrow 0^{+}}{P\set{X \leq x | y < Y \leq y + \Delta {y}}} Δy→0+limP{X≤x∣y<Y≤y+Δy}存在,则称此极限值为在 { Y = y } \set{Y = y} {Y=y}的条件下, X X X的条件分布函数,记为 F ( x ∣ y ) F(x | y) F(x∣y)
- 如果二维连续型随机向量 ( X , Y ) (X, Y) (X,Y)的分布函数为 F ( x , y ) F(x, y) F(x,y),概率密度为 f ( x , y ) f(x, y) f(x,y),且 f ( x , y ) f(x, y) f(x,y)在点 ( x , y ) (x, y) (x,y)处连续,而 Y Y Y的边缘概率密度 f Y ( y ) > 0 f_{Y}(y) > 0 fY(y)>0且连续,则
F ( x ∣ y ) = lim Δ y → 0 + P { X ≤ x ∣ y < Y ≤ y + Δ y } = lim Δ y → 0 + P { X ≤ x , y < Y ≤ y + Δ y } P { y < Y ≤ y + Δ y } = lim Δ y → 0 + F ( x , y + Δ y ) − F ( x , y ) F Y ( y + Δ y ) − F Y ( y ) = lim Δ y → 0 + F ( x , y + Δ y ) − F ( x , y ) Δ y lim Δ y → 0 + F Y ( y + Δ y ) − F Y ( y ) Δ y = ∂ F ( x , y ) ∂ y d d y F Y ( y ) = ∫ − ∞ x f ( u , y ) d u f Y ( y ) \begin{aligned} F(x | y) &= \lim\limits_{\Delta{y} \rightarrow 0^{+}}{P\set{X \leq x | y < Y \leq y + \Delta{y}}} \\ &= \lim\limits_{\Delta{y} \rightarrow 0^{+}}{\cfrac{P\set{X \leq x , y < Y \leq y + \Delta{y}}}{P\set{y < Y \leq y + \Delta{y}}}} \\ &= \lim\limits_{\Delta{y} \rightarrow 0^{+}}{\cfrac{F(x, y + \Delta{y}) - F(x, y)}{F_{Y}(y + \Delta{y}) - F_{Y}(y)}} \\ &= \cfrac{\lim\limits_{\Delta{y} \rightarrow 0^{+}}{\cfrac{F(x, y + \Delta{y}) - F(x, y)}{\Delta{y}}}}{\lim\limits_{\Delta{y} \rightarrow 0^{+}}{\cfrac{F_{Y}(y + \Delta{y}) - F_{Y}(y)}{\Delta{y}}}} \\ &= \cfrac{\cfrac{\partial{F(x, y)}}{\partial{y}}}{\cfrac{d}{dy} F_{Y}(y)} \\ &= \cfrac{\int_{- \infty}^{x}{f(u, y) du}}{f_{Y}(y)} \end{aligned} F(x∣y)=Δy→0+limP{X≤x∣y<Y≤y+Δy}=Δy→0+limP{y<Y≤y+Δy}P{X≤x,y<Y≤y+Δy}=Δy→0+limFY(y+Δy)−FY(y)F(x,y+Δy)−F(x,y)=Δy→0+limΔyFY(y+Δy)−FY(y)Δy→0+limΔyF(x,y+Δy)−F(x,y)=dydFY(y)∂y∂F(x,y)=fY(y)∫−∞xf(u,y)du
- 即在 { Y = y } \set{Y = y} {Y=y}的条件下, X X X的条件分布函数为 F ( x ∣ y ) = ∫ − ∞ x f ( u , y ) d u f Y ( y ) = ∫ − ∞ x f ( u , y ) f Y ( y ) d u F(x | y) = \frac{\int_{- \infty}^{x}{f(u, y) du}}{f_{Y}(y)} = \int_{- \infty}^{x}{\frac{f(u, y)}{f_{Y}(y)} du} F(x∣y)=fY(y)∫−∞xf(u,y)du=∫−∞xfY(y)f(u,y)du
- 若令 f ( x ∣ y ) = f ( x , y ) f Y ( y ) f(x | y) = \frac{f(x, y)}{f_{Y}(y)} f(x∣y)=fY(y)f(x,y),则 F ( x ∣ y ) = ∫ − ∞ x f ( u , y ) f Y ( y ) d u = ∫ − ∞ x f ( u ∣ y ) d u F(x | y) = \int_{- \infty}^{x}{\frac{f(u, y)}{f_{Y}(y)} du} = \int_{- \infty}^{x}{f(u | y) du} F(x∣y)=∫−∞xfY(y)f(u,y)du=∫−∞xf(u∣y)du,称 f ( x ∣ y ) f(x | y) f(x∣y)为在 { Y = y } \set{Y = y} {Y=y}的条件下, X X X的条件概率密度
示例1
问题
- 设 ( X , Y ) (X, Y) (X,Y)服从区域 D = { ( x , y ) ∣ x 2 + y 2 ≤ R 2 , R > 0 } D = \set{(x, y) | x^{2} + y^{2} \leq R^{2} , R > 0} D={(x,y)∣x2+y2≤R2,R>0}上的均匀分布,求 f ( y ∣ x ) f(y | x) f(y∣x)及 f ( x ∣ y ) f(x | y) f(x∣y)
解答
f ( x , y ) = { 1 π R 2 , ( x , y ) ∈ D 0 , ( x , y ) ∉ D f(x, y) = \begin{cases} \cfrac{1}{\pi R^{2}} , & (x, y) \in D \\ 0 , & (x, y) \notin D \end{cases} f(x,y)=⎩ ⎨ ⎧πR21,0,(x,y)∈D(x,y)∈/D
f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y = { 2 π R 2 R 2 − x 2 , ∣ x ∣ ≤ R 0 , ∣ x ∣ > R f_{X}(x) = \int_{- \infty}^{+ \infty}{f(x, y) dy} = \begin{cases} \cfrac{2}{\pi R^{2}} \sqrt{R^{2} - x^{2}} , & |x| \leq R \\ 0 , & |x| > R \end{cases} fX(x)=∫−∞+∞f(x,y)dy=⎩ ⎨ ⎧πR22R2−x2 ,0,∣x∣≤R∣x∣>R
- 故当 y ∈ ( − R , R ) y \in (- R, R) y∈(−R,R)时,有
f ( x ∣ y ) = f ( x , y ) f Y ( y ) = { 1 2 R 2 − x 2 , ∣ x ∣ ≤ R 2 − y 2 0 , 其他 f(x | y) = \cfrac{f(x, y)}{f_{Y}(y)} = \begin{cases} \cfrac{1}{2 \sqrt{R^{2} - x^{2}}} , & |x| \leq \sqrt{R^{2} - y^{2}} \\ 0 , & 其他 \end{cases} f(x∣y)=fY(y)f(x,y)=⎩ ⎨ ⎧2R2−x2 1,0,∣x∣≤R2−y2 其他
- 可以看出,在 { Y = y } \set{Y = y} {Y=y}的条件下, X X X在区间 [ − R 2 − y 2 , R 2 − y 2 ] [- \sqrt{R^{2} - y^{2}}, \sqrt{R^{2} - y^{2}}] [−R2−y2 ,R2−y2 ]上服从均匀分布
示例2
问题
- 设随机变量 X X X的分布密度为
f X ( x ) = { λ 2 x e − λ x , x > 0 0 , x ≤ 0 f_{X}(x) = \begin{cases} \lambda^{2} x e^{- \lambda x} , & x > 0 \\ 0 , & x \leq 0 \end{cases} fX(x)={λ2xe−λx,0,x>0x≤0
- 而随机变量 Y Y Y在区间 ( 0 , X ) (0, X) (0,X)上服从均匀分布,求 Y Y Y的概率密度 f Y ( y ) f_{Y}(y) fY(y)
解答
f Y ( y ∣ X = x ) = { 1 x , y ∈ ( 0 , x ) 0 , y ∉ ( 0 , x ) f_{Y}(y | X = x) = \begin{cases} \cfrac{1}{x} , & y \in (0, x) \\ 0 , & y \notin (0, x) \end{cases} fY(y∣X=x)=⎩ ⎨ ⎧x1,0,y∈(0,x)y∈/(0,x)
f ( x , y ) = f X ( x ) f Y ( y ∣ X = x ) = { λ 2 e − λ x , 0 < y < x 0 , 其他 f(x, y) = f_{X}(x) f_{Y}(y | X = x) = \begin{cases} \lambda^{2} e^{- \lambda x} , & 0 < y < x \\ 0 , & 其他 \end{cases} f(x,y)=fX(x)fY(y∣X=x)={λ2e−λx,0,0<y<x其他
f Y ( y ) = ∫ − ∞ + ∞ f ( x , y ) d x = { ∫ y + ∞ λ 2 e − λ x d x , y > 0 0 , y ≤ 0 = { λ e − λ y , y > 0 0 , y ≤ 0 f_{Y}(y) = \int_{- \infty}^{+ \infty}{f(x, y) dx} = \begin{cases} \int_{y}^{+ \infty}{\lambda^{2} e^{- \lambda x}} dx , & y > 0 \\ 0 , & y \leq 0 \end{cases} = \begin{cases} \lambda e^{- \lambda y} , & y > 0 \\ 0 , & y \leq 0 \end{cases} fY(y)=∫−∞+∞f(x,y)dx={∫y+∞λ2e−λxdx,0,y>0y≤0={λe−λy,0,y>0y≤0
- 即随机变量 Y Y Y服从参数为 λ \lambda λ的指数分布
随机变量的独立性
随机变量相互独立
-
设二维随机向量 ( X , Y ) (X, Y) (X,Y)的分布函数和边缘分布函数分别为 F ( x , y ) F(x, y) F(x,y), F X ( x ) F_{X}(x) FX(x), F Y ( y ) F_{Y}(y) FY(y),若对于任意的实数 x x x, y y y有 P { X ≤ x , Y ≤ y } = P { X ≤ x } ⋅ P { Y ≤ y } P\set{X \leq x , Y \leq y} = P\set{X \leq x} \cdot P\set{Y \leq y} P{X≤x,Y≤y}=P{X≤x}⋅P{Y≤y}, F ( x , y ) = F X ( x ) ⋅ F Y ( y ) F(x, y) = F_{X}(x) \cdot F_{Y}(y) F(x,y)=FX(x)⋅FY(y),则称随机变量 X X X与 Y Y Y相互独立
-
设二维离散型随机向量 ( X , Y ) (X, Y) (X,Y)的分布律为 P { X = x i , Y = y j } = p i j ( i , j = 1 , 2 , ⋯ ) P\set{X = x_{i} , Y = y_{j}} = p_{ij} (i, j = 1, 2, \cdots) P{X=xi,Y=yj}=pij(i,j=1,2,⋯),关于 X X X, Y Y Y的边缘分布律分别为 P { X = x i } = p i ⋅ P\set{X = x_{i}} = p_{i \cdot} P{X=xi}=pi⋅和 P { Y = y j } = p ⋅ j P\set{Y = y_{j}} = p_{\cdot j} P{Y=yj}=p⋅j,则 X X X和 Y Y Y相互独立的充分必要条件是:对任意的 i , j = 1 , 2 , ⋯ i, j = 1, 2, \cdots i,j=1,2,⋯,有 P { X = x i , Y = y j } = P { X = x i } ⋅ P { Y = y j } P\set{X = x_{i} , Y = y_{j}} = P\set{X = x_{i}} \cdot P\set{Y = y_{j}} P{X=xi,Y=yj}=P{X=xi}⋅P{Y=yj},即 p i j = p i ⋅ ⋅ p ⋅ j p_{ij} = p_{i \cdot} \cdot p_{\cdot j} pij=pi⋅⋅p⋅j
-
设二维连续型随机向量 ( X , Y ) (X, Y) (X,Y)的概率密度及边缘概率密度分别为 f ( x , y ) f(x, y) f(x,y), f X ( x ) f_{X}(x) fX(x), f Y ( y ) f_{Y}(y) fY(y),则 X X X与 Y Y Y相互独立的充要条件是:对于 f ( x , y ) f(x, y) f(x,y), f X ( x ) f_{X}(x) fX(x), f Y ( y ) f_{Y}(y) fY(y)均连续的点 ( x , y ) (x, y) (x,y),有 f ( x , y ) = f X ( x ) ⋅ f Y ( y ) f(x, y) = f_{X}(x) \cdot f_{Y}(y) f(x,y)=fX(x)⋅fY(y)
示例
问题
- 设二维随机向量 ( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 2 , σ 2 2 , ρ ) (X, Y) \sim N(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho) (X,Y)∼N(μ1,μ2,σ12,σ22,ρ),试证明: X X X与 Y Y Y相互独立的充分必要条件是 ρ = 0 \rho = 0 ρ=0
解答
-
f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 exp { − 1 2 ( 1 − ρ 2 ) [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] } ( − ∞ < x < + ∞ , − ∞ < y < + ∞ ) f(x, y) = \frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1 - \rho^{2}}} \exp\left\{- \frac{1}{2 (1 - \rho^{2})} \left[\frac{(x - \mu_{1})^{2}}{\sigma_{1}^{2}} - 2 \rho \frac{(x - \mu_{1}) (y - \mu_{2})}{\sigma_{1} \sigma_{2}} + \frac{(y - \mu_{2})^{2}}{\sigma_{2}^{2}}\right]\right\} (- \infty < x < + \infty , - \infty < y < + \infty) f(x,y)=2πσ1σ21−ρ2 1exp{−2(1−ρ2)1[σ12(x−μ1)2−2ρσ1σ2(x−μ1)(y−μ2)+σ22(y−μ2)2]}(−∞<x<+∞,−∞<y<+∞)
-
f X ( x ) = 1 2 π σ 1 e − ( x − μ 1 ) 2 2 σ 1 2 , − ∞ < x < + ∞ f_{X}(x) = \frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{- \frac{(x - \mu_{1})^{2}}{2 \sigma_{1}^{2}}} , - \infty < x < + \infty fX(x)=2π σ11e−2σ12(x−μ1)2,−∞<x<+∞
-
f Y ( y ) = 1 2 π σ 2 e − ( y − μ 2 ) 2 2 σ 2 2 , − ∞ < y < + ∞ f_{Y}(y) = \frac{1}{\sqrt{2 \pi} \sigma_{2}} e^{- \frac{(y - \mu_{2})^{2}}{2 \sigma_{2}^{2}}} , - \infty < y < + \infty fY(y)=2π σ21e−2σ22(y−μ2)2,−∞<y<+∞
-
先证必要性:若 X X X与 Y Y Y相互独立,则对于任意的实数 x x x, y y y,有 f ( x , y ) = f X ( x ) ⋅ f Y ( y ) f(x, y) = f_{X}(x) \cdot f_{Y}(y) f(x,y)=fX(x)⋅fY(y)
-
取 x = μ 1 x = \mu_{1} x=μ1, y = μ 2 y = \mu_{2} y=μ2,则有 1 1 − ρ 2 = 1 \frac{1}{\sqrt{1 - \rho^{2}}} = 1 1−ρ2 1=1,从而 ρ = 0 \rho = 0 ρ=0
-
再证充分性:若 ρ = 0 \rho = 0 ρ=0,则对于任意的实数 x x x, y y y,必有 f ( x , y ) = f X ( x ) ⋅ f Y ( y ) f(x, y) = f_{X}(x) \cdot f_{Y}(y) f(x,y)=fX(x)⋅fY(y)
-
因此随机变量 X X X与 Y Y Y相互独立
定理1
- 设随机变量 X X X与 Y Y Y相互独立,又 g ( x ) g(x) g(x)与 h ( y ) h(y) h(y)是连续函数,则随机变量 g ( X ) g(X) g(X)与 h ( Y ) h(Y) h(Y)相互独立
定理2
- 设 ( X 1 , X 2 , ⋯ , X m ) (X_{1}, X_{2}, \cdots, X_{m}) (X1,X2,⋯,Xm)和 ( Y 1 , Y 2 , ⋯ , Y n ) (Y_{1}, Y_{2}, \cdots, Y_{n}) (Y1,Y2,⋯,Yn)相互独立,则 X i ( i = 1 , 2 , ⋯ , m ) X_{i} (i = 1, 2, \cdots, m) Xi(i=1,2,⋯,m)和 Y j ( j = 1 , 2 , ⋯ , n ) Y_{j} (j = 1, 2, \cdots, n) Yj(j=1,2,⋯,n)相互独立,又若 g g g, h h h是连续函数,则 g ( X 1 , X 2 , ⋯ , X m ) g(X_{1}, X_{2}, \cdots, X_{m}) g(X1,X2,⋯,Xm)与 h ( Y 1 , Y 2 , ⋯ , Y n ) h(Y_{1}, Y_{2}, \cdots, Y_{n}) h(Y1,Y2,⋯,Yn)相互独立
标签:infty,set,frac,cdots,leq,数理统计,数学,Delta,概率论 From: https://blog.csdn.net/from__2025_01_01/article/details/145076612