换主元,常用放缩与有界放缩
已知函数\(f(x)=a^2e^x-3ax+2\sin x-1\)
(1)若\(f(0)\)是函数\(f(x)\)的极值,求实数\(a\)的值
(2)证明,当\(a\geq 1\)时,\(f(x)\geq 0\)
解
(1)\(f^{\prime}(x)=a^2e^x-3a+2\cos x,f^{\prime}(0)=a^2-3a+2=0\)
得\(a=1\)或\(a=2\)
(2) 考虑\(\varphi(a)=a^2e^x-3ax+2\sin x-1\)
则\(\varphi^{\prime}(a)=2ae^x-3x\),关于\(a\)单调递增
\(\varphi^{\prime}(a)=0\)得\(a=\dfrac{3x}{2e^x}\leq \dfrac{3x}{2ex}\leq \dfrac{3}{2e}<1\)
从而\(\varphi(a)\)在\(a\geq 1\)上单调递增
则\(\varphi(a)\geq \varphi(1)=e^x-3x+2\sin x-1\)
记\(\gamma(x)=e^x-3x+2\sin x-1\)
\(\gamma^{\prime}(x)=e^x+2\cos x-3\)
当\(x<0\)时,\(e^x+2\cos x-3<1-3+2=-2+2=0\)
当\(x\in\left(0,\dfrac{\pi}{2}\right)\)时,\(\gamma^{\prime}(x)=e^x+2\cos x-3>1+2-3=0\)
当\(x\in\left(\pi,+\infty\right)\)时,\(\gamma^{\prime}(x)=e^x+2\cos x-3>e^{\pi}-5>e^{\pi}-5>0\)
当\(x\in\left[\dfrac{\pi}{2},\pi\right]\)时,\(\gamma^{\prime\prime}(x)=e^x-2\sin x>e^{\frac{\pi}{2}}-2>0\)
所以\(\gamma^{\prime}(x)\geq \gamma^{\prime}\left(\dfrac{\pi}{2}\right)=e^{\frac{\pi}{2}}-3>0\)
从而当\(x>0,\gamma^{\prime}(x)>0\)
而\(\gamma^{\prime}(0)=0\)
则\(\gamma(x)\geq \gamma(0)=0\)
综上\(f(x)=\varphi(a)\geq \varphi(1)=e^x-3x+2\sin x-1\geq \gamma(0)=0\)
标签:prime,geq,59,导数,dfrac,每日,varphi,pi,gamma From: https://www.cnblogs.com/manxinwu/p/18011738