隐零点、同构、必要性探路三法解决
已知函数\(f(x)=e^{x-1}-a\ln x\)
(1)当\(a=-1\),求曲线\(y=f(x)\)在\((1,f(1))\)处的切线方程
(2)当\(a>0\),若不等式\(f(x)\geq a+a\ln a\)恒成立,求\(a\)的取值范围
解
(1)\(f(x)=e^{x-1}+\ln x,f^{\prime}(x)=e^{x-1}+\dfrac{1}{x}\)
\(f(1)=1,f^{\prime}(1)=2\)
从而\(y-1=2(x-1)\)
(2)
法一:隐零点
记\(h(x)=f(x)-a\ln a=e^{x-1}-a\ln x-a-a\ln a\)
\(h^{\prime}(x)=e^{x-1}-\dfrac{a}{x}\),其单调递增
\(h^{\prime}(x)>x-\dfrac{a}{x}\)
取\(x=\sqrt{a}\),有\(h^{\prime}(\sqrt{a})>0\)
而\(x\to0,h^{\prime}(x)\to-\infty\)
从而有唯一的\(m\)使得\(h^{\prime}(m)=0\),即\(e^{m-1}-\dfrac{a}{m}=0\)
即\(a=me^{m-1}\)
并且\(h(m)\)是最小值
\(h(x)\geq h(m)=e^{m-1}-a\ln m-a-a\ln a\)
即\(h(m)=e^{m-1}-2me^{m-1}\ln m-m^2e^{m-1}\geq 0\)
即\(1-2m\ln m-m^2\geq 0\)
记\(g(m)=1-2m\ln m-m^2\)
\(g^{\prime}(m)=-2\ln m-2-2m\),单调递减
因\(g^{\prime}(1)=-4<0,g^{\prime}(^{-2})=4-2-\dfrac{2}{e^2}>0\)
从而\(g(m)\)先增再减
并且\(g(1)=0\),\(\lim\limits_{m\to 0}(m)=0\)
从而\(m\in(0,1]\)
因\(a=me^{m-1}\),则\(a\in(0,1]\)
法二:同构
\(e^{x-1}\geq a+a\ln a+a\ln x\)
即\(e^{x-1}\geq a(1+\ln a+\ln x)\)
即\(e^{x-1}\geq a(1+\ln ax)\)
即\(xe^{x-1}\geq ax(1+\ln ax)\)
即\(xe^{x-1}\geq e^{\ln ax}(1+\ln ax)=(1+\ln ax)e^{1+\ln ax-1}\)
考虑函数\(\gamma(x)=xe^{x-1},\gamma^{\prime}(x)=e^{x-1}(x+1)>0\)
从而要使得\(\gamma(x)\geq\gamma(1+\ln ax)\)
即\(x\geq 1+\ln ax\)
即\(a\leq \dfrac{e^{x-1}}{x},x>0\)
记\(\xi(x)=\dfrac{e^{x-1}}{x},\xi^{\prime}(x)=\dfrac{e^{x-1}(x-1)}{x^2}\)
则\(\xi(x)\)在\((0,1)\)减,在\([1,+\infty)\)上增
则\(0<a\leq \xi(1)=1\)
法三:必要性探路
发现一特殊点\(f(1)=1\)
从而一定有\(a+a\ln a\leq 1\)
记\(\Gamma(a)=a+a\ln a,\Gamma^{\prime}(a)=2+\ln a\)
则\(\Gamma(a)\)在\((0,e^{-2})\)上减,在\((e^{-2},+\infty)\)上增
而\(\Gamma(1)=1\),从而\(0<a\leq 1\)
下面说明\(0<a\leq 1\)是符合条件的
记\(h(x)=f(x)-a\ln a=e^{x-1}-a\ln x-a-a\ln a\geq e^{x-1}-a\ln x-a\)
记\(F(x)=e^{x-1}-a\ln x-a,F^{\prime}(x)=e^{x-1}-\dfrac{a}{x}\)
则\(F(x)\)先减再增
因\(F^{\prime}(1)=1-a\geq 1,F(1)=1-a>0\)
而\(F^{\prime}(a)=e^{a-1}-1<0\)
从而\(F^{\prime}(x)\)有唯一的零点\(x_0\in(a,1)\)
并且\(x=x_0\)是\(F(x)\)的最小值,\(e^{x_0-1}=\dfrac{a}{x_0}\)
\(F(x_0)=e^{x_0-1}-a\ln x_0-a=\dfrac{a}{x_0}-a\ln x_0-a=\dfrac{a}{x_0}-a\left(\ln a+1-x_0\right)-a=a\left(x_0+\dfrac{1}{x_0}\right)-2a\geq 2a-2a\geq 0\)
从而\(a\in(0,1]\)