LeetCode
跳跃游戏 VI
题目描述
给你一个下标从 0 开始的整数数组 nums
和一个整数 k
。
一开始你在下标 0
处。每一步,你最多可以往前跳 k
步,但你不能跳出数组的边界。也就是说,你可以从下标 i
跳到 [i + 1, min(n - 1, i + k)]
包含 两个端点的任意位置。
你的目标是到达数组最后一个位置(下标为 n - 1
),你的 得分 为经过的所有数字之和。
请你返回你能得到的 最大得分 。
示例 1:
输入:nums = [1,-1,-2,4,-7,3], k = 2
输出:7
解释:你可以选择子序列 [1,-1,4,3] (上面加粗的数字),和为 7 。
示例 2:
输入:nums = [10,-5,-2,4,0,3], k = 3
输出:17
解释:你可以选择子序列 [10,4,3] (上面加粗数字),和为 17 。
示例 3:
输入:nums = [1,-5,-20,4,-1,3,-6,-3], k = 2
输出:0
提示:
-
1 <= nums.length, k <= 105
-
-104 <= nums[i] <= 104
思路
这个题目对现阶段的我来说还是太难了,看大佬题解
灵神题解
代码
C++
class Solution {
public:
int maxResult(vector<int> &nums, int k) {
int n = nums.size();
vector<int> f(n);
f[0] = nums[0];
deque<int> q = {0};
for (int i = 1; i < n; i++) {
// 1. 出
if (q.front() < i - k) {
q.pop_front();
}
// 2. 转移
f[i] = f[q.front()] + nums[i];
// 3. 入
while (!q.empty() && f[i] >= f[q.back()]) {
q.pop_back();
}
q.push_back(i);
}
return f[n - 1];
}
};
Java
class Solution {
public int maxResult(int[] nums, int k) {
int n = nums.length;
int[] f = new int[n];
f[0] = nums[0];
Deque<Integer> q = new ArrayDeque<>();
q.add(0);
for (int i = 1; i < n; i++) {
// 1. 出
if (q.peekFirst() < i - k) {
q.pollFirst();
}
// 2. 转移
f[i] = f[q.peekFirst()] + nums[i];
// 3. 入
while (!q.isEmpty() && f[i] >= f[q.peekLast()]) {
q.pollLast();
}
q.add(i);
}
return f[n - 1];
}
}
标签:2024.2,27,下标,nums,int,示例,back,寒假,front From: https://www.cnblogs.com/ysk0904/p/18008747