有界性,第三问有点问题,没说明数列的唯一性
已知函数\(f(x)=\sqrt{\dfrac{2x}{x+1}},g(x)=\dfrac{\sin x}{x}\)
(1)求\(f(x)\)单调增区间
(2)证明:\(-\dfrac{1}{4}<g(x)<1\)
(3)设\(x_1=\sqrt2,x_{n+1}=f(x_n)\),证明:\(x_1x_2\cdots x_n<\dfrac{\pi}{2}\)
解
(1)定义域:\(2x(x+1)\geq 0\)得\(x<-1\)或\(x\geq 0\)
\(f(x)=\sqrt{\dfrac{2(x+1)-2}{x+1}}=\sqrt{2-\dfrac{2}{x+1}}\)
则\(f(x)\)的单调增区间为\(x<-1\)或\(x\geq 0\)
(2) \(g(x)\)的定义域\(x\neq 0\)
因\(\sin x<x\),则\(g(x)<1\)
因\(g(x)\)是偶,考虑\(x>0\),则左边即证:\(h(x)=\sin x+\dfrac{x}{4}>0\)
\(h^{\prime}(x)=\cos x+\dfrac{1}{4}\),而\(\cos x\)在\(\left(0,\pi\right]\)上减,
利用\(\sin x\)的有界性,\(|\sin x|\leq 1\),考虑\(\dfrac{x}{4}>1\),\(x>4\)
则\(x>\dfrac{4\pi}{3}>4\)时,则\(f(x)>0\)
当\(x\in(0,\pi)\)时,\(h(x)>0\)
当\(x\in\left[\pi,\dfrac{4\pi}{3}\right]\)时,\(h(x)\)减,\(h(x)\geq h\left(\dfrac{4\pi}{3}\right)=\sin\dfrac{4\pi}{3}+\dfrac{\pi}{3}=\dfrac{\pi}{3}-\dfrac{\sqrt3}{2}>0\)
综上,\(\sin x+\dfrac{x}{4}>0\)得证
综上\(-\dfrac{1}{4}<g(x)<1\)
(3)\(x_{n+1}=\sqrt{\dfrac{2x_n}{x_n+1}}\),两边平方\(x^2_{n+1}=\dfrac{2x_n}{x_n+1}\)
即\(\dfrac{1}{x^2_{n+1}}=\dfrac{x_n+1}{2x_n}=\dfrac{1}{2}+\dfrac{1}{2x_n}\)
即\(\dfrac{2}{x^2_{n+1}}=\dfrac{1}{x_n}+1\)
因\(x_1=\sqrt{2}\),则\(a_1=\dfrac{1}{x_1}=\dfrac{\sqrt2}{2}=\cos\dfrac{\pi}{4}\)
而\(2\cos^2\dfrac{\pi}{2^{n+2}}=\cos^2\dfrac{\pi}{2^{n+1}}+1\)
从而\(\dfrac{1}{x_n}=\cos^2\dfrac{\pi}{2^{n+1}}\)
则\(x_n=\dfrac{1}{\cos\dfrac{\pi}{2^{n+1}}}\)
则\(x_1x_2x_3\cdots x_n=\dfrac{1}{\cos\dfrac{\pi}{2}\cos\dfrac{\pi}{2^{2}}\cos^2\dfrac{\pi}{2^{3}}\cdots\cos\dfrac{\pi}{2^{n+1}}}=\dfrac{2^n\sin\dfrac{\pi}{2^{n+1}}}{2^n\cos\dfrac{\pi}{2}\cos\dfrac{\pi}{2^{2}}\cos\dfrac{\pi}{2^{3}}\cdots\cos\dfrac{\pi}{2^{n+1}}}=\dfrac{2^n\sin\dfrac{\pi}{2^{n+1}}}{\sin\dfrac{\pi}{2}}=2^n\sin\dfrac{\pi}{2^{n+1}}\)
而\(2^n\sin\dfrac{\pi}{2^{n+1}}<2^n\dfrac{\pi}{2^{n+1}}=\dfrac{\pi}{2}\)
得证.
标签:cos,导数,dfrac,57,2x,sqrt,sin,pi,每日 From: https://www.cnblogs.com/manxinwu/p/18011663