类欧几里德
\(\text{令}\space f(a,b,c,n)=\sum_{i=1}^n\lfloor\frac{ai+b}{c}\rfloor\)
\(f(a,b,c,n)=\frac{n(n+1)}{2}\lfloor\frac{a}{c}\rfloor+(n+1)\lfloor\frac{b}{c}\rfloor+f(a\%c,b\%c,c,n)\)
第二类斯特林数求自然幂和
$\sum_{i=1}^n i^k =\sum_{i=1}^n \sum_{j=1}^k $$n\brace m$$j!\binom{i}{j}$
\(=\sum_{j=1}^k\)\(k\brace j\)\(j!\sum_{i=1}^n\binom{i}{j}\)
\(=\sum_{j=1}^k\)\(k\brace j\)\(j!\binom{n+1}{j+1}\)
标签:lfloor,frac,数论,sum,rfloor,binom,brace From: https://www.cnblogs.com/nebula-xy/p/17461567.html