首页 > 其他分享 >[数论]组合数取模

[数论]组合数取模

时间:2023-06-17 09:23:25浏览次数:31  
标签:组合 数论 ll ans 数取模 int pe fac bmod

Combinatorial Number

一、组合数取模1:

例题:回答T组询问,输出\(C_{n}^{m} \bmod 10^9+7\)的值。

\(C_{n}^{m} = \dfrac{n!}{m!*(n-m)!}\)
\(\dfrac{a}{b} \bmod p\) ==> \(a \bmod p*(b \bmod p)^{-1}\)

  1. \(n!*(m!)^{-1}*(n-m)^{-1}\)

  2. \(inv[i] = (p-\dfrac{p}{i})*inv[p\)%\(i]\)%\(p\)

    代码
    #include<bits/stdc++.h>
    using namespace std;
    const int N = 1e7+10;
    const int mod = 1e9+7;
    typedef long long ll;
    ll fac[N],fnv[N];
    
    ll ksm(ll a,ll b)
    {
    	ll ans = 1,base = a;
    	while(b>0)
    	{
    		if(b&1)
    		{
    			ans *= base;
    			ans %= mod;
    		}
    		base *= base;
    		base%=mod;
    		b>>=1;
    	}
    	return ans;
    }
    
    ll binom(int n,int m)
    {
    	if(m<0||m>n)return 0;
    	return fac[n]*fnv[m]%mod*fnv[n-m]%mod;
    }
    
    int main()
    {
    	fac[0] = 1;
    	for(int i = 1;i<=N;i++)
    		fac[i] = fac[i-1]*i%mod;
    	fnv[N] = ksm(fac[N],mod-2);
    	for(int i = N;i>=1;i--)
    		fnv[i-1] = fnv[i]*i%mod;
    	assert(fnv[0]==1);
    	int t;
    	cin>>t;
    	while(t--)
    	{
    		int a,b;
    		cin>>a>>b;
    		cout<<binom(a,b)<<endl;
    	}
    	return 0;
    }
    

二、组合数取模2:分段打表求组合数

例题:回答\(T\)组询问,输出\(C_{n}^{m} \bmod10^9+7\)的值。

对于所有数据,保证\(1≤T≤10\),\(1≤m≤n≤10^9\)

思路:

分段打表,每隔\(10^6\)的距离就打表
\(0!,10^6! ,2*10^6!,...,n!\)

比如我要求\((10^8+12345)!\)
可以先查表找到\(10^8\)的阶乘,再求\(12345\)次阶乘,这样\(for\)一次最多\(10^6\)

代码
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int T = 1e6;
const int mod = 1e9+7;
ll fact[] = {1,641102369,578095319,5832229,259081142,974067448,316220877,690120224,251368199,980250487,682498929,134623568,95936601,933097914,167332441,598816162,336060741,248744620,626497524,288843364,491101308,245341950,565768255,246899319,968999,586350670,638587686,881746146,19426633,850500036,76479948,268124147,842267748,886294336,485348706,463847391,544075857,898187927,798967520,82926604,723816384,156530778,721996174,299085602,323604647,172827403,398699886,530389102,294587621,813805606,67347853,497478507,196447201,722054885,228338256,407719831,762479457,746536789,811667359,778773518,27368307,438371670,59469516,5974669,766196482,606322308,86609485,889750731,340941507,371263376,625544428,788878910,808412394,996952918,585237443,1669644,361786913,480748381,595143852,837229828,199888908,526807168,579691190,145404005,459188207,534491822,439729802,840398449,899297830,235861787,888050723,656116726,736550105,440902696,85990869,884343068,56305184,973478770,168891766,804805577,927880474,876297919,934814019,676405347,567277637,112249297,44930135,39417871,47401357,108819476,281863274,60168088,692636218,432775082,14235602,770511792,400295761,697066277,421835306,220108638,661224977,261799937,168203998,802214249,544064410,935080803,583967898,211768084,751231582,972424306,623534362,335160196,243276029,554749550,60050552,797848181,395891998,172428290,159554990,887420150,970055531,250388809,487998999,856259313,82104855,232253360,513365505,244109365,1559745,695345956,261384175,849009131,323214113,747664143,444090941,659224434,80729842,570033864,664989237,827348878,195888993,576798521,457882808,731551699,212938473,509096183,827544702,678320208,677711203,289752035,66404266,555972231,195290384,97136305,349551356,785113347,83489485,66247239,52167191,307390891,547665832,143066173,350016754,917404120,296269301,996122673,23015220,602139210,748566338,187348575,109838563,574053420,105574531,304173654,542432219,34538816,325636655,437843114,630621321,26853683,933245637,616368450,238971581,511371690,557301633,911398531,848952161,958992544,925152039,914456118,724691727,636817583,238087006,946237212,910291942,114985663,492237273,450387329,834860913,763017204,368925948,475812562,740594930,45060610,806047532,464456846,172115341,75307702,116261993,562519302,268838846,173784895,243624360,61570384,481661251,938269070,95182730,91068149,115435332,495022305,136026497,506496856,710729672,113570024,366384665,564758715,270239666,277118392,79874094,702807165,112390913,730341625,103056890,677948390,339464594,167240465,108312174,839079953,479334442,271788964,135498044,277717575,591048681,811637561,353339603,889410460,839849206,192345193,736265527,316439118,217544623,788132977,618898635,183011467,380858207,996097969,898554793,335353644,54062950,611251733,419363534,965429853,160398980,151319402,990918946,607730875,450718279,173539388,648991369,970937898,500780548,780122909,39052406,276894233,460373282,651081062,461415770,358700839,643638805,560006119,668123525,686692315,673464765,957633609,199866123,563432246,841799766,385330357,504962686,954061253,128487469,685707545,299172297,717975101,577786541,318951960,773206631,306832604,204355779,573592106,30977140,450398100,363172638,258379324,472935553,93940075,587220627,776264326,793270300,291733496,522049725,579995261,335416359,142946099,472012302,559947225,332139472,499377092,464599136,164752359,309058615,86117128,580204973,563781682,954840109,624577416,895609896,888287558,836813268,926036911,386027524,184419613,724205533,403351886,715247054,716986954,830567832,383388563,68409439,6734065,189239124,68322490,943653305,405755338,811056092,179518046,825132993,343807435,985084650,868553027,148528617,160684257,882148737,591915968,701445829,529726489,302177126,974886682,241107368,798830099,940567523,11633075,325334066,346091869,115312728,473718967,218129285,878471898,180002392,699739374,917084264,856859395,435327356,808651347,421623838,105419548,59883031,322487421,79716267,715317963,429277690,398078032,316486674,384843585,940338439,937409008,940524812,947549662,833550543,593524514,996164327,987314628,697611981,636177449,274192146,418537348,925347821,952831975,893732627,1277567,358655417,141866945,581830879,987597705,347046911,775305697,125354499,951540811,247662371,343043237,568392357,997474832,209244402,380480118,149586983,392838702,309134554,990779998,263053337,325362513,780072518,551028176,990826116,989944961,155569943,596737944,711553356,268844715,451373308,379404150,462639908,961812918,654611901,382776490,41815820,843321396,675258797,845583555,934281721,741114145,275105629,666247477,325912072,526131620,252551589,432030917,554917439,818036959,754363835,795190182,909210595,278704903,719566487,628514947,424989675,321685608,50590510,832069712,198768464,702004730,99199382,707469729,747407118,302020341,497196934,5003231,726997875,382617671,296229203,183888367,703397904,552133875,732868367,350095207,26031303,863250534,216665960,561745549,352946234,784139777,733333339,503105966,459878625,803187381,16634739,180898306,68718097,985594252,404206040,749724532,97830135,611751357,31131935,662741752,864326453,864869025,167831173,559214642,718498895,91352335,608823837,473379392,385388084,152267158,681756977,46819124,313132653,56547945,442795120,796616594,256141983,152028387,636578562,385377759,553033642,491415383,919273670,996049638,326686486,160150665,141827977,540818053,693305776,593938674,186576440,688809790,565456578,749296077,519397500,551096742,696628828,775025061,370732451,164246193,915265013,457469634,923043932,912368644,777901604,464118005,637939935,956856710,490676632,453019482,462528877,502297454,798895521,100498586,699767918,849974789,811575797,438952959,606870929,907720182,179111720,48053248,508038818,811944661,752550134,401382061,848924691,764368449,34629406,529840945,435904287,26011548,208184231,446477394,206330671,366033520,131772368,185646898,648711554,472759660,523696723,271198437,25058942,859369491,817928963,330711333,724464507,437605233,701453022,626663115,281230685,510650790,596949867,295726547,303076380,465070856,272814771,538771609,48824684,951279549,939889684,564188856,48527183,201307702,484458461,861754542,326159309,181594759,668422905,286273596,965656187,44135644,359960756,936229527,407934361,267193060,456152084,459116722,124804049,262322489,920251227,816929577,483924582,151834896,167087470,490222511,903466878,361583925,368114731,339383292,388728584,218107212,249153339,909458706,322908524,202649964,92255682,573074791,15570863,94331513,744158074,196345098,334326205,9416035,98349682,882121662,769795511,231988936,888146074,137603545,582627184,407518072,919419361,909433461,986708498,310317874,373745190,263645931,256853930,876379959,702823274,147050765,308186532,175504139,180350107,797736554,606241871,384547635,273712630,586444655,682189174,666493603,946867127,819114541,502371023,261970285,825871994,126925175,701506133,314738056,341779962,561011609,815463367,46765164,49187570,188054995,957939114,64814326,933376898,329837066,338121343,765215899,869630152,978119194,632627667,975266085,435887178,282092463,129621197,758245605,827722926,201339230,918513230,322096036,547838438,985546115,852304035,593090119,689189630,555842733,567033437,469928208,212842957,117842065,404149413,155133422,663307737,208761293,206282795,717946122,488906585,414236650,280700600,962670136,534279149,214569244,375297772,811053196,922377372,289594327,219932130,211487466,701050258,398782410,863002719,27236531,217598709,375472836,810551911,178598958,247844667,676526196,812283640,863066876,857241854,113917835,624148346,726089763,564827277,826300950,478982047,439411911,454039189,633292726,48562889,802100365,671734977,945204804,508831870,398781902,897162044,644050694,892168027,828883117,277714559,713448377,624500515,590098114,808691930,514359662,895205045,715264908,628829100,484492064,919717789,513196123,748510389,403652653,574455974,77123823,172096141,819801784,581418893,15655126,15391652,875641535,203191898,264582598,880691101,907800444,986598821,340030191,264688936,369832433,785804644,842065079,423951674,663560047,696623384,496709826,161960209,331910086,541120825,951524114,841656666,162683802,629786193,190395535,269571439,832671304,76770272,341080135,421943723,494210290,751040886,317076664,672850561,72482816,493689107,135625240,100228913,684748812,639655136,906233141,929893103,277813439,814362881,562608724,406024012,885537778,10065330,60625018,983737173,60517502,551060742,804930491,823845496,727416538,946421040,678171399,842203531,175638827,894247956,538609927,885362182,946464959,116667533,749816133,241427979,871117927,281804989,163928347,563796647,640266394,774625892,59342705,256473217,674115061,918860977,322633051,753513874,393556719,304644842,767372800,161362528,754787150,627655552,677395736,799289297,846650652,816701166,687265514,787113234,358757251,701220427,607715125,245795606,600624983,10475577,728620948,759404319,36292292,491466901,22556579,114495791,647630109,586445753,482254337,718623833,763514207,66547751,953634340,351472920,308474522,494166907,634359666,172114298,865440961,364380585,921648059,965683742,260466949,117483873,962540888,237120480,620531822,193781724,213092254,107141741,602742426,793307102,756154604,236455213,362928234,14162538,753042874,778983779,25977209,49389215,698308420,859637374,49031023,713258160,737331920,923333660,804861409,83868974,682873215,217298111,883278906,176966527,954913,105359006,390019735,10430738,706334445,315103615,567473423,708233401,48160594,946149627,346966053,281329488,462880311,31503476,185438078,965785236,992656683,916291845,881482632,899946391,321900901,512634493,303338827,121000338,967284733,492741665,152233223,165393390,680128316,917041303,532702135,741626808,496442755,536841269,131384366,377329025,301196854,859917803,676511002,373451745,847645126,823495900,576368335,73146164,954958912,847549272,241289571,646654592,216046746,205951465,3258987,780882948,822439091,598245292,869544707,698611116};

ll fac(int n)
{
	ll v = fact[n/T];
	for(int i = n/T*T+1;i<=n;i++)
		v = v*i%mod;
	return v;
}

ll ksm(ll a,ll b)
{
	ll ans = 1,base = a;
	while(b>0)
	{
		if(b&1)
		{
			ans *= base;
			ans %= mod;
		}
		base *= base;
		base%=mod;
		b>>=1;
	}
	return ans;
}

ll binom(int n,int m)
{
	if(m<0||m>n)return 0;
	return fac(n)*ksm(fac(m)*fac(n-m)%mod,mod-2)%mod;
}

int main()
{
   	//打表
	//ll fac = 1;
	// for(int i = 1;i< mod;i++)
	// {
	// 	fac = fac*i%mod;
	// 	if(i%1000000==0)cout<<fac<<",";
	// }

	int t;
	cin>>t;
	while(t--)
	{
		int a,b;
		cin>>a>>b;
		cout<<binom(a,b)<<endl;
	}
	return 0;
}

三、组合数取模3:Lucas

Th(Lucas):

​ \(0<=ni<=mi<p\)
​ \(n = n0p^0 + n1p^1 + ... + nkp^k\)
​ $ m = m0p^0 + m1p^1 + ... + mkp^k$
​ $ C_{n}^{m} ≡ C_{n0}{m0}*C_{n1}{m1}...C_{nk}^{mk} (\bmod p) $

对于\(C_{a}^{b}\),若\(a<b\) 认为是\(0\)

\[\left( \begin{matrix} 13\\ 4 \end{matrix} \right) \tag{2} \bmod 3 \]

写成三进制

$ \left( \begin{matrix} 111\ 011 \end{matrix} \right) \tag{2} \bmod 3$ = $ \left( \begin{matrix} 1\ 0 \end{matrix} \right) \tag{2}$$\left( \begin{matrix} 1\ 1 \end{matrix} \right) \tag{2}$$ \left( \begin{matrix} 1\ 1 \end{matrix} \right) \tag{2} \bmod 3$

例题:给定一个素数\(p\)。回答\(T\)组询问,输出\(C_{n}^{m} \bmod p\)的值

\(C_{n}^{m} = \dfrac{n!}{m!*(n-m)!}\)

注意:\(1<=m<=n<=1^{18} 2<=p<=10^{6}\)
\(m,n\)很大,\(p\)比较小的情况

代码
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int M = 1000000;
ll fac[M+10],fnv[M+10],p;

ll ksm(ll a,ll b,ll m)
{
	ll ans = 1,base = a;
	while(b>0)
	{
		if(b&1)
		{
			ans *= base;
			ans %= m;
		}
		base *= base;
		base%=m;
		b>>=1;
	}
	return ans;
}

ll binom(ll a,ll b)
{
	if(b<0||b>a)return 0;
	return fac[a]*fnv[b]%p*fnv[a-b]%p;
}

ll lucas(ll n,ll m,ll p)
{
	ll ans = 1;
	while(n>0||m>0)//做p进制分解
	{
		ans =  ans*binom(n%p,m%p)%p;
		n/=p,m/=p;
	}
	return ans;
}

int main()
{
	int t;
	cin>>p>>t;
	fac[0] = 1;
	for(int i = 1;i<=p-1;i++)
		fac[i] = fac[i-1]*i%p;
	/*
		n!/(m!*(n-m)!)
		a/b mod p ==> a mod p*(b mod p)^-1
		即:
		1.n!*(m!)^-1*(n-m)^-1
		2.inv[i] = (p-p/i)*inv[p%i]%p
	*/
	fnv[p-1] = ksm(fac[p-1],p-2,p);
	for(int i = p-1;i>=1;i--)
		fnv[i-1] = fnv[i]*i%p;
	assert(fnv[0]==1);
	while(t--)
	{
		ll n,m;
		cin>>n>>m;
		/*
		(Lucas)
			ll ans = 1;
			while(n>0||m>0)//做p进制分解
			{
				ans =  ans*binom(n%p,m%p)%p;
				n/=p,m/=p;
			}
			cout<<ans<<endl;
		*/
		cout<<lucas(n,m,p)<<endl;
	}
}
Tips:

一般也不会直接考你求个组合数,那一般喜欢考\(\bmod 2\)

\(\bmod 2\) 什么意思呢?
\(C_{n}^{m}\) 每一项的n>=m,写成二进制形式只可能是$ \left( \begin{matrix} 1\ 0 \end{matrix} \right) \tag{2}$$ \left( \begin{matrix} 1\ 1 \end{matrix} \right) \tag{2}$$ \left( \begin{matrix} 0\ 0 \end{matrix} \right) \tag{2}$
所以 \(C_{n}^{m} ≡ 1 (\bmod 2)\) 意味着n&m == m
也有可能和数位dp结合一下.

四、组合数取模4:exLucas——模数p可以是合数的情况

p是合数的情况不好处理,
像之前学的CRT,如果p是合数,我们拆成若干素数幂的形式。
比如:

$ \left( \begin{matrix} n\ m \end{matrix} \right) \tag{2} \bmod q$

\(q = p1^{e1}*p2^{e2}...pk^{ek}\)

$ \left( \begin{matrix} n\ m \end{matrix} \right) \tag{2} \bmod pi^{ei}\( 再用\)CRT$可以解决

即:我们要解决
$ \left( \begin{matrix} n\ m \end{matrix} \right) \tag{2} \bmod pi^{ei}$ \((p^e<=1e6)\)

\(CRT\)
\(m1,m2...mn\)
找到\(xi\)满足:\(xi \bmod mi = 1\)
$ xi \bmod \dfrac{M}{mi} = 0$;
\(x ≡ ai(\bmod mi)\)
\(x = Σxi*ai\)
\(x\)就是答案

\(Q:\)考虑为什么我们不能用之前的逆元的写法
\(A:\)逆元写法:
\(C_{n}^{m} = \dfrac{n!}{m!*(n-m)!}\)
\(\dfrac{a}{b} \bmod p\) ==> \(a \bmod p*(b \bmod p)^{-1}\)
即:
1.\(n!*(m!)^{-1}*(n-m)^{-1}\)
2.\(inv[i] = (p-\dfrac{p}{i})*inv[p\)%\(i]\)%\(p\)

1.因为n可能很大,直接算阶乘可能算不出来
2.算逆元的话,分母不一定是可逆的,比如\(p=2\),分母有很多\(2\)的因子,所以说它不一定是可逆的
整体思路就是把阶乘都用\(n!= p^{an}*bn\)表示出来,其中p不整除\(bn\)(把\(p\)的因子都提出来,那这个\(bn\)相当于是多出来的)

![image-20230615220830433](C:\Users\Zhou Yanan\AppData\Roaming\Typora\typora-user-images\image-20230615220830433.png)

\(n!= p^{an}*bn\)
\(C_{n}^{m} = \dfrac{p^{an}*bn}{p^{am}*bm*p^{an-m}*bn-m}\)
\(= \dfrac{p^{an-am-(an-m)}*bn}{bm*(bn-m)}\)
这里\(b\)是没有\(p\)的因子,肯定与\(p\)的幂次是互质的,那我们可以直接求其逆元
\(= p^{an-am-(an-m)}*bn*(bm*(bn-m))^{-1} (\bmod p^e)\)
画个表...

![image-20230615222836776](C:\Users\Zhou Yanan\AppData\Roaming\Typora\typora-user-images\image-20230615222836776.png)

\(n!= p^{an}*bn\)
预处理:
\(fac[i]:1到i\)之间不被\(p\)整除%\(p^e\)的所有数的乘积
\(fac[p^e-1]^{n/p^e}*fac[n\)%\(p^e]\)
有\(\dfrac{n}{p^e}\)个完整的组,和n%\(p^e\)多出来的零头
递归下去就是:\(p^{\frac{n}{p}}*\dfrac{n}{p}!\)————>\(\dfrac{n}{p}!\)就是子问题
一直递归到\(<p\)为止

每个东西都算完之后我们用\(CRT\)合并

![image-20230615223328423](C:\Users\Zhou Yanan\AppData\Roaming\Typora\typora-user-images\image-20230615223328423.png)

代码

例题:

#include<bits/stdc++.h>
using namespace std;
 
typedef long long ll;
const int N = 101000;
int m,T,M,phipe;
pair<int,int>x[110];
ll pr[110];
ll ans[N],a[N],b[N],fac[1010000];

ll ksm(ll a,ll b,ll m)
{
	ll ans = 1,base = a;
	while(b>0)
	{
		if(b&1)
		{
			ans *= base;
			ans %= m;
		}
		base *= base;
		base%=m;
		b>>=1;
	}
	return ans;
}
pair<ll,ll>calc(ll a,int p,int pe)
{
	ll cntp = 0,cnts = 0,val  = 1;
	while(a)
	{
		cntp += a/p;
		cnts += a/pe;
		val = val*fac[a%pe]%pe;
		//val = val*ksm(fac[pe],a/pe)%pe*fac[a%pe]%pe
		a/=p;
	}
	//val = val*ksm(fac[pe],cnts,pe)%pe;
	val = val*ksm(fac[pe-1],cnts%phipe,pe)%pe;
	return {val,cntp};//非素数部分和素数部分
}

ll binom(ll a,ll b,int p,int pe)
{
	/*
		n!= p^an*bn
		Cnm = p^an*bn/(p^am*bm*p^(an-m)*(bn-m))
			= p^(an-am-(an-m))*bn/(bm*(bn-m))
			= p^(an-am-(an-m))*bn*(bm*(bn-m))^(-1) (mod p^e)
	*/
	auto f1 = calc(a,p,pe);
	auto f2 = calc(b,p,pe);
	auto f3 = calc(a-b,p,pe);
	ll v1 = f1.first*ksm(f2.first*f3.first%pe,phipe-1,pe)%pe;//与p互质的部分
	ll v2 = ksm(p,f1.second-f2.second-f3.second,pe);//与p不互质的部分
	return v1*v2%pe;
}

int main()
{
	ios::sync_with_stdio(false);
	cin.tie(nullptr);	cout.tie(nullptr);
	cin>>m>>T;
	M = m;
	int t = 0;
	for(int i = 2;i<=m;i++)
	{
		if(m%i==0)//对m进行分解
		{
			int p = i,pe = 1;
			while(m%i==0)m/=i,pe*=i;
			x[t++] = {p,pe};//x记录分解结果
		}
	}
	/*
		CRT
		m1,m2...mn
		找到xi满足:xi mod mi = 1
				   xi mod M/mi = 0;
		x ≡ ai(mod mi)
		x = Σxi*ai
	*/
	for(int i = 0;i<t;i++)
	{
		int pe = x[i].second;
		for(int c = 0;c<M;c++)//这里M很小我们可以直接暴力for一遍找xi,就不用写exgcd了
		{
			if(c%pe==1&&c%(M/pe)==0)
			{
				pr[i] = c;
				break;
			}
		}
	}
	for(int i = 0;i<T;i++)	cin>>a[i]>>b[i];//先读进来再每个因子分开处理
	for(int i = 0;i<t;i++)
	{
		int p = x[i].first,pe = x[i].second;
		fac[0] = 1;//fac[i]:1~i之间不被p整除%p^e的所有数的乘积
		for(int j = 1;j<=pe;j++)
		{
			if(j%p==0)
				fac[j] = fac[j-1];
			else
				fac[j] = fac[j-1]*j%pe;//注意是%pe不是p
		}
		//phi(x) = x*∏(i=1~n)(1-1/pi)
		//phipe = pe*(1-1/p);
		phipe = (pe/p)*(p-1);
		for(int j = 0;j<T;j++)
		{
								// b
								//Ca mod (p^pe)
			ans[j] = (ans[j]+binom(a[j],b[j],p,pe)*pr[i])%M;//用CRT并起来
		}
	}
	for(int j = 0;j<T;j++)
		cout<<ans[j]<<'\n';
	return 0;
}
封装代码
#include<bits/stdc++.h>
using namespace std;
struct exLucas
{
	const int N = 1e6+10;
	typedef long long ll;
	ll n,m,p,T;
	inline ll ksm(ll a,ll b,const ll m)
	{
		ll ans = 1,base = a;
		while(b>0)
		{
			if(b&1)
			{
				ans *= base;
				ans %= m;
			}
			base *= base;
			base%=m;
			b>>=1;
		}
		return ans;
	}
	ll fac(const ll n,const ll p,const ll pe)
	{
		//pe:p^e
		//fac[i]:1~i之间不被p整除%pe的所有数的乘积
		if(!n)
			return 1;
		//ans包括了:n/(pe)个完整的组,和n%(pe)个零头
		ll ans = 1;
		//fac[pe-1]^(n/pe)*fac[n%pe]
		for(int i = 1;i < pe;i++)
			if(i%p)
				ans = ans*i%pe;
		ans = ksm(ans,n/pe,pe);
		for (int i = 1; i <= n % pe; i++)
			if (i % p)
				ans = ans * i % pe;
		return ans*fac(n/p,p,pe)%pe;//递归,分解成子问题
	}
	ll exgcd(const ll a,const ll b,ll &x,ll &y)
	{
		if(b==0)
		{
			x = 1,y = 0;
			return a;
		}
		int d = exgcd(b,a%b,y,x);
		y -= (a/b)*x;
		return d;
	}
	ll inv(const ll a,const ll p)
	{
		ll x,y;
		exgcd(a,p,x,y);
		return (x%p+p)%p;
	}
	ll C(const ll n,const ll m,const ll p,const ll pe)
	{
		/*
			Cnm
			n!= p^an*bn
			Cnm	= p^an*bn/(p^am*bm*p^(an-m)*(bn-m))
				= p^(an-am-(an-m))*bn/(bm*(bn-m))
				= p^(an-am-(an-m))*bn*(bm*(bn-m))^(-1) (mod p^e)
		*/
		if (n < m)
			return 0;
		//Cnm = n!/m!*(n-m)!
		ll f1 = fac(n, p, pe), f2 = fac(m, p, pe), f3 = fac(n - m, p, pe), cnt = 0;//计算与p互质的部分
		//统计与p不互质的部分
		for (ll i = n; i; i /= p)
			cnt += i / p;
		for (ll i = m; i; i /= p)
			cnt -= i / p;
		for (ll i = n - m; i; i /= p)
			cnt -= i / p;
		return f1 * inv(f2, pe) % pe * inv(f3, pe) % pe * ksm(p, cnt, pe) % pe;
	}
	ll a[N],c[N];
	int cnt;
	inline ll CRT()
	{
		/*
			CRT
			m1,m2...mn
			找到xi满足:xi mod mi = 1
					   xi mod M/mi = 0;
			x ≡ ai(mod mi)
			x = Σxi*ai
		*/
		ll M = 1,ans = 0;
		for(int i = 0;i<cnt;i++)
			M *= c[i];
		for(int i = 0;i<cnt;i++)
			ans = (ans+a[i]*(M/c[i])%M*inv(M/c[i],c[i])%M)%M;
		return ans;
	}

	ll exlucas(const ll n,const ll m,ll p)
	{
		cnt = 0;
		ll tmp = sqrt(p);
		for(int i = 2;i<=tmp&&p>1;i++)
		{
			ll tmp = 1;
			while(p%i==0)
				p/=i,tmp*=i;
			if(tmp>1)
				a[cnt] = C(n,m,i,tmp),c[cnt++] = tmp;
		}
		if(p>1)
			a[cnt] = C(n,m,p,p),c[cnt++] = p;
		return CRT();
	}
	int solve()
	{
		ios::sync_with_stdio(false);
		cin.tie(0),cout.tie(0);

		cin >> n >> m >> p;
		cout << exlucas(n, m, p)<<endl;
		return 0;
	}

};

标签:组合,数论,ll,ans,数取模,int,pe,fac,bmod
From: https://www.cnblogs.com/nannandbk/p/17487026.html

相关文章

  • [数论]Divisor and Gcd
    DivisorandGcd1、算术基本定理:n的质因数分解唯一一些常见结论:1.素数无限2.\(\lim_{n\rightarrow+\infty}n\prod\dfrac{n}{\frac{n}{\ln{n}}}\)(Π(n)表示<=n素数的个数)————即n以下素数个数大约是\(\frac{n}{\ln(n)}\)级别的3.\(Pn=O(nlogn)\)级别的(Pn表示素数)......
  • [数论]中国剩余定理CRT
    ChineseRemainderTheorem\(x≡ai(modmi)\)中国剩余定理CRT1.定义Th.给出一元线性同余线性方程组\(x≡a1\bmodm1\)\(x≡a2\bmodm2\)...\(x≡an\bmodmn\)定理指出假设素数\(m1,m2...mn\)两两互素,对任意的整数\(a1,a2...an\)上述方程有解,并且可以通过如下......
  • [数论]素数筛和整数分块
    PrimesievingandIntegerblocking一、Primenumbersievemethod1.埃氏筛O(nloglogn)从2开始,2是质数,那么2的倍数:4、6、8、10、12、14、16...肯定不是质数3是质数,那么3的倍数:6、9、12、15、18、21.....肯定不是质数4已经被筛去了(即被置为false),不是质数,那么4的倍数肯定......
  • Python设计模式-08-组合模式
    模式是一种结构型设计模式,它允许我们将对象组合成树形结构来表示“部分-整体”的层次结构。组合模式通常包括以下几个角色:组件(Component):定义了组合中所有对象的通用接口,可以是一个抽象类或接口。叶子节点(Leaf):表示组合中的叶子节点,它没有子节点。组合节点(Composite):表示组合中的......
  • 「学习笔记」组合数学
    本文部分内容来自\(\texttt{OI-Wiki}\)。加法&乘法原理加法原理完成一个工程可以有\(n\)类办法,\(a_i(1\lei\len)\)代表第\(i\)类方法的数目。那么完成这件事共有\(S=a_1+a_2+\cdots+a_n\)种不同的方法。乘法原理完成一个工程需要分\(n\)个步骤,\(a_i(1\le......
  • 组合
    组合题目:给定两个整数n和k,返回1…n中所有可能的k个数的组合。示例:输入:n=4,k=2输出:[[2,4],[3,4],[2,3],[1,2],[1,3],[1,4],]解题思路:典型的回溯算法问题classSolution{privateList<List<Integer>>ans=newArrayList();publi......
  • 数字组合
    数字组合题目:描述给定一个候选数字的集合candidates和一个目标值target。找到candidates中所有的和为target的组合。在同一个组合中,candidates中的某个数字出现次数不限。所有数值(包括target)都是正整数.返回的每一个组合内的数字必须是非降序的.返回的所......
  • Mybatis中SqlNode的组合模式
    组合( Composite )模式就是把对象组合成树形结构,以表示“部分-整体”的层次结构,用户可以像处理一个简单对象一样来处理一个复杂对象,从而使得调用者无需了解复杂元素的内部结构。组合模式中的角色有:抽象组件(容器):定义了树形结构中所有类的公共行为,例如add(),remove()等方法。树叶:最终......
  • 第八章--FusionCharts Free和组合图XML
    时间:2009-01-1222:23      作者:道长AIEQQ百度POCOYahoo新浪365Key天极和讯博拉Live奇客鲜果收客饭否叽歪  xAxisName='Month' showValues='0' de......
  • 调题时出现的问题 in 『组合数学』
    (递推计算组合数)P4071[SDOI2016]排列计数吐个槽先:没啥好吐槽的,就是我自己傻掉了.Orz.这题的式子非常水.在\(n\)个数里面选\(m\)个固定,即\(\mathrm{C}_n^m\).再把剩下的\(n-m\)个数错序排列,即\(h(n-m)\).因为只有上面的\(m\)个数才能满足\(i=a_i\)......