基本知识
空间向量基本定理
如果三个向量 \(\vec{a},\vec{b},\vec{c}\)不共面,那么对空间任一向量 \(\vec{p}\),存在一个唯一的有序实数组\(x,y,z\),使 \(\vec{p}=x \vec{a}+y \vec{b}+z \vec{c}\) .
证明
存在性 设 \(\vec{a},\vec{b},\vec{c}\)不共面,过点\(O\)作 \(\overrightarrow{O A}=\vec{a}\) ,\(\overrightarrow{O B}=\vec{b}\),\(\overrightarrow{O C}=\vec{c}\),\(\overrightarrow{O P}=\vec{p}\),
过点\(P\)作直线\(PP'\)平行于\(OC\)交平面\(OAB\)于点\(P'\)在平面\(OAB\)内,
过点\(P'\)作直线\(P' A'//OB\),\(P' B'//OA\),
存在三个数\(x,y,z\),使得 \(\overrightarrow{O A^{\prime}}=x \overrightarrow{O A}=x \vec{a}\),\(\overrightarrow{O B^{\prime}}=y \overrightarrow{O B}=y \vec{b}\),\(\overrightarrow{O C^{\prime}}=z \overrightarrow{O C}=z \vec{c}\),
\(\therefore \overrightarrow{O P}=\overrightarrow{O A^{\prime}}+\overrightarrow{O B^{\prime}}+\overrightarrow{O C^{\prime}}=x \overrightarrow{O A}+y \overrightarrow{O B}+z \overrightarrow{O C}\);
唯一性 设另有一组实数\(x',y',z'\),使得\(\vec{p}=x^{\prime} \vec{a}+y^{\prime} \vec{b}+z^{\prime} \vec{c}\),
则 \(x \vec{a}+y \vec{b}+z \vec{c}=x^{\prime} \vec{a}+y^{\prime} \vec{b}+z^{\prime} \vec{c}\)
\(\therefore\left(x-x^{\prime}\right) \vec{a}+\left(y-y^{\prime}\right) \vec{a}+\left(z-z^{\prime}\right) \vec{c}=\overrightarrow{0}\),
\(∵\vec{a},\vec{b},\vec{c}\)不共面,\(\therefore x-x^{\prime}=y-y^{\prime}=z-z^{\prime}=0\),即\(x=x'\)且\(y=y'\)且 \(z=z'\) .
故实数\(x,y,z\)是唯一的.
基底
若三向量\(\vec{a},\vec{b},\vec{c}\)不共面,我们把\((\vec{a},\vec{b},\vec{c})\)叫做空间的一个基底,\(\vec{a},\vec{b},\vec{c}\) 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底.
特别地,如果空间的一个基底中的三个基向量两两垂直,且长度都为\(1\),那么这个基底叫做单位正交基底,常用 \(\{\vec{i},\vec{j},\vec{k}\}\)表示.由 基本定理可知,对空间中的任意向量\(\vec{a}\),均可以分解为三个向量 \(x \vec{i}\),\(y\vec{j}\),\(z \vec{k}\),使 \(a=x \vec{i}+y \vec{j}+z \vec{k}\),像这样,把一个空间向量分解为三个两两垂直的向量,叫做把空间向量进行正交分解.
【例】 设命题\(p: \vec{a},\vec{b},\vec{c}\)是三个非零向量;命题\(q:{\vec{a},\vec{b},\vec{c}}\)为空间的一组基底,则命题\(q\)是命题\(p\)的 条件.
解 \(\vec{a},\vec{b},\vec{c}\)是三个非零向量成立,当\(\vec{a},\vec{b},\vec{c}\)三个向量共面时,则\(\{\vec{a},\vec{b},\vec{c}\}\)不为空间的一组基,
即命题\(p\) 推不出命题\(q\);
但反之\(\{\vec{a},\vec{b},\vec{c}\}\)为空间的一组基,则\(\vec{a},\vec{b},\vec{c}\)不共面,所以\(\vec{a},\vec{b},\vec{c}\)是三个非零向量,
即命题\(q\)推出命题\(p\);
所以命题\(q\)是命题\(p\)的充分不必要条件.
推论
设\(O,A,B,C\)是不共面的四点,则对空间任一点\(P\),都存在唯一的三个有序实数\(x ,y ,z\),使 \(\overrightarrow{O P}=x \overrightarrow{O A}+y \overrightarrow{O B}+z \overrightarrow{O C}\) .
若\(x+y+z=1\),则点\(P,A,B,C\)四点共面.
基本方法
【题型1】空间向量基本定理的理解
【典题1】 若\(\{\vec{a},\vec{b},\vec{c}\}\)构成空间的一个基底,则下列向量能构成空间的一个基底的是( )
A.\(\vec{b}+\vec{c},\vec{b},\vec{b}-\vec{c}\) \(\qquad \qquad \qquad \qquad\) B. \(\vec{a}+\vec{b},\vec{a}-\vec{b},\vec{c}\)
C. \(\vec{a},\vec{a}+\vec{b},\vec{a}-\vec{b}\) \(\qquad \qquad \qquad \qquad\) D. \(\vec{a}+\vec{b},\vec{a}+\vec{b}+\vec{c},\vec{c}\)
解析 对于\(A\),若向量 \(\vec{b}+\vec{c},\vec{b},\vec{b}-\vec{c}\)共面,
则 \(\vec{b}+\vec{c}=\lambda(\vec{b}-\vec{c})+\mu \vec{b}=(\lambda+\mu) \vec{b}-\lambda \vec{c}\),
即 \(\left\{\begin{array}{l}
\lambda+\mu=1 \\
-\lambda=1
\end{array}\right.\),解得\(λ=-1,μ=2\),
故向量 \(\vec{b}+\vec{c},\vec{b},\vec{b}-\vec{c}\)共面,故\(A\)错误,
对于\(B\),若向量 \(\vec{a}+\vec{b},\vec{a}-\vec{b},\vec{c}\)共面,则 \(\vec{a}+\vec{b}=\lambda(\vec{a}-\vec{b})+\mu \vec{c}\),\(λ,μ\)无解,
故向量 \(\vec{a}+\vec{b},\vec{a}-\vec{b},\vec{c}\)不共面,故\(B\)正确,
对于\(C\),若向量 \(\vec{a},\vec{a}+\vec{b},\vec{a}-\vec{b}\)共面,
则 \(\vec{a}+\vec{b}=\lambda \vec{a}+\mu(\vec{a}-\vec{b})=(\lambda+\mu) \vec{a}-\mu \vec{b}\),
即 \(\left\{\begin{array}{l}
\lambda+\mu=1 \\
-\mu=1
\end{array}\right.\),解得\(λ=2,μ=-1\),
故向量 \(\vec{a},\vec{a}+\vec{b},\vec{a}-\vec{b}\)共面,故\(C\)错误,
对于\(D\),若向量 \(\vec{a}+\vec{b},\vec{a}+\vec{b}+\vec{c},\vec{c}\)共面,
则 \(\vec{a}+\vec{b}+\vec{c}=\lambda(\vec{a}+\vec{b})+\mu \vec{c}\),解得\(λ=μ=1\),
故向量 \(\vec{a}+\vec{b},\vec{a}+\vec{b}+\vec{c},\vec{c}\)共面,故\(D\)错误.
故选:\(B\).
巩固练习
1 在空间四点\(O,A,B,C\)中,若 \(\{\overrightarrow{O A},\overrightarrow{O B},\overrightarrow{O C}\}\)是空间的一个基底,则下列命题不正确的是( )
A.\(O,A,B,C\)四点不共线 \(\qquad \qquad \qquad \qquad\) B.\(O,A,B,C\)四点共面,但不共线
C.\(O,A,B,C\)四点不共面 \(\qquad \qquad \qquad \qquad\) D.\(O,A,B,C\)四点中任意三点不共线
2 (多选)给出下列命题,其中正确的有( )
A.空间任意三个向量都可以作为一组基底
B.已知向量 \(\vec{a} / / \vec{b}\),则 \(\vec{a},\vec{b}\)与任何向量都不能构成空间的一组基底
C.\(A,B,M,N\)是空间四点,若 \(\overrightarrow{B A},\overrightarrow{B M},\overrightarrow{B N}\)不能构成空间的一组基底,则\(A,B,M,N\)共面
D.已知 \(\{\vec{a},\vec{b},\vec{c}\}\)是空间向量的一组基底,若 \(\vec{m}=\vec{a}+\vec{c}\),则 \(\{\vec{a},\vec{b},\vec{m}\}\)也是空间一组基底
参考答案
-
答案 \(B\)
解析 因为 \(\{\overrightarrow{O A},\overrightarrow{O B},\overrightarrow{O C}\}\)为基底,所以非零向量 \(\overrightarrow{O A},\overrightarrow{O B},\overrightarrow{O C}\)不在同一平面内,
即\(O,A,B,C\)四点不共面,所以\(A、C、D\)选项说法正确,B错误.
故选:\(B\). -
答案 \(BCD\)
解析 对于 ,空间中只有不共面的三个向量可以作为一组基底,所以选项 \(A\)错误;
对于\(B\),由向量 \(\vec{a} / / \vec{b}\),则 \(\vec{a},\vec{b}\)与任何向量都是共面向量,所以不能构成空间的一组基底,选项\(B\)正确;
对于\(C\),若 \(\overrightarrow{B A},\overrightarrow{B M},\overrightarrow{B N}\)不能构成空间的一组基底,则 \(\overrightarrow{B A},\overrightarrow{B M},\overrightarrow{B N}\)是共面向量,所以\(A,B,M,N\)共面,选项\(C\)正确;
对于D,因为 \(\{\vec{a},\vec{b},\vec{c}\}\)是空间向量的一组基底,所以 \(\vec{a},\vec{b},\vec{c}\)不共面,所以 \(\vec{a},\vec{b},\vec{a}+\vec{c}\)也不共面,
即 \(\vec{m}=\vec{a}+\vec{c}\)时,\(\{\vec{a},\vec{b},\vec{m}\}\)也是空间一组基底,选项\(BCD\)正确.
故选:\(BCD\).
【题型2】基底表示空间向量
【典题1】 如图所示,在平行六面体\(ABCD-A_1 B_1 C_1 D_1\)中,\(\overrightarrow{A B}=\vec{a}\),\(\overrightarrow{A D}=\vec{b}\),\(\overrightarrow{A A_{1}}=\vec{c}\),\(M\)是\(D_1 D\)的中点,点\(N\)是\(AC_1\)上的点,且 \(\overrightarrow{A N}=\dfrac{1}{3} A C_{1}\),用 \(\vec{a},\vec{b},\vec{c}\)表示向量 \(\overrightarrow{M N}\)的结果是( )
A. \(\dfrac{1}{2} \vec{a}+\vec{b}+\vec{c}\) \(\qquad \qquad \qquad \qquad \qquad \qquad\) B. \(\dfrac{1}{5} \vec{a}+\dfrac{1}{5} \vec{b}+\dfrac{4}{5} \vec{c}\)
C. \(\dfrac{1}{5} \vec{a}-\dfrac{3}{10} \vec{b}-\dfrac{1}{5} \vec{c}\) \(\qquad \qquad \qquad \qquad \qquad \qquad\) D. \(\dfrac{1}{3} \vec{a}-\dfrac{2}{3} \vec{b}-\dfrac{1}{6} \vec{c}\)
解析 \(∵M\)是\(D_1 D\)的中点,\(\overrightarrow{A N}=\dfrac{1}{3} A C_{1}\),
\(\therefore \overrightarrow{M N}=\overrightarrow{M D}+\overrightarrow{D A}+\overrightarrow{A N}\)
\(=-\dfrac{1}{2} D \vec{D}_{1}-\overrightarrow{A D}+\dfrac{1}{3} \overrightarrow{A C_{1}}\)
\(=-\dfrac{1}{2} \overrightarrow{A A}_{1}-\overrightarrow{A D}+\dfrac{1}{3}\left(\overrightarrow{A A_{1}}+\overrightarrow{A D}+\overrightarrow{A B}\right)\)
\(=\dfrac{1}{3} \overrightarrow{A B}-\dfrac{2}{3} \overrightarrow{A D}-\dfrac{1}{6} \overrightarrow{A A_{1}}=\dfrac{1}{3} \vec{a}-\dfrac{2}{3} \vec{b}-\dfrac{1}{6} \vec{c}\).
故选:\(D\).
巩固练习
1 如图所示,在平行六面体\(ABCD-A_1 B_1 C_1 D_1\)中,\(M\)为\(A_1 C_1\)与\(B_1 D_1\)的交点,若 \(\overrightarrow{A B}=\vec{a}\),\(\overrightarrow{A D}=\vec{b}\),\(\overrightarrow{A A_{1}}=\vec{c}\),则 \(\overrightarrow{C M}=\)( )
A. \(\dfrac{1}{2} \vec{a}+\dfrac{1}{2} \vec{b}+\vec{c}\)\(\qquad\) B. \(\dfrac{1}{2} \vec{a}-\dfrac{1}{2} \vec{b}+\vec{c}\) \(\qquad\) C. \(-\dfrac{1}{2} \vec{a}+\dfrac{1}{2} b+\vec{c}\) \(\qquad\) D. \(-\dfrac{1}{2} \vec{a}-\dfrac{1}{2} \vec{b}+\vec{c}\)
2 如图,已知三棱锥\(O-ABC\),点\(M,N\)分别是\(OA,BC\)的中点,点\(G\)为线段\(MN\)上一点,且\(MG=2GN\),若记 \(\overrightarrow{O A}=\vec{a}\),\(\overrightarrow{O B}=\vec{b}\),\(\overrightarrow{O C}=\vec{c}\),则 \(\overrightarrow{O G}=\)( )
A. \(\dfrac{1}{3} \vec{a}+\dfrac{1}{3} \vec{b}+\dfrac{1}{3} \vec{c}\) \(\qquad\)B. \(\dfrac{1}{3} \vec{a}+\dfrac{1}{3} \vec{b}+\dfrac{1}{6} \vec{c}\) \(\qquad\) C. \(\dfrac{1}{6} \vec{a}+\dfrac{1}{3} \vec{b}+\dfrac{1}{3} \vec{c}\) \(\qquad\) D. \(\dfrac{1}{6} \vec{a}+\dfrac{1}{6} \vec{b}+\dfrac{1}{3} \vec{c}\)
参考答案
-
答案 \(D\)
解析 \(∵\)在平行六面体\(ABCD-A_1 B_1 C_1 D_1\)中,\(M\)为\(A_1 C_1\)与\(B_1 D_1\)的交点,;
\(\therefore \overrightarrow{C M}=\overrightarrow{C B}+\overrightarrow{B M}=\overrightarrow{C B}+\dfrac{1}{2}\left(\overrightarrow{B A_{1}}+\overrightarrow{B C_{1}}\right)\)\(=-\overrightarrow{A D}+\dfrac{1}{2} \overrightarrow{B A_{1}}+\dfrac{1}{2} \overrightarrow{B C_{1}}\)
\(=-\overrightarrow{A D}+\dfrac{1}{2}\left(\overrightarrow{B A}+\overrightarrow{A A_{1}}\right)+\dfrac{1}{2}\left(\overrightarrow{B C}+\overrightarrow{C C_{1}}\right)\)\(=-\overrightarrow{A D}-\dfrac{1}{2} \overrightarrow{A B}+\dfrac{1}{2} A \vec{A}_{1}+\dfrac{1}{2} \overrightarrow{A D}+\dfrac{1}{2} A \vec{A}_{1}\)
\(=-\dfrac{1}{2} \vec{a}-\dfrac{1}{2} \vec{b}+\vec{c}\);
故选:\(D\).
-
答案 \(C\)
解析 \(\overrightarrow{O G}=\overrightarrow{O M}+\overrightarrow{M G},\overrightarrow{M G}=\dfrac{2}{3} \overrightarrow{M N},\overrightarrow{M N}=\overrightarrow{O N}-\overrightarrow{O M}\),\(\overrightarrow{O M}=\dfrac{1}{2} \overrightarrow{O A}=\dfrac{1}{2} \vec{a}\),
\(\overrightarrow{O N}=\dfrac{1}{2}(\overrightarrow{O B}+\overrightarrow{O C})=\dfrac{1}{2}(\vec{b}+\vec{c})\),
可得 \(\overrightarrow{O G}=\dfrac{1}{6} \vec{a}+\dfrac{1}{3} \vec{b}+\dfrac{1}{3} \vec{c}\).
故选:\(C\).
【题型3】空间向量基本定理的应用
【典题1】 如图,在四面体\(OABC\)中,点\(M\)在线段\(OA\)上,且\(OM=2MA\),\(N\)为\(BC\)的中点.
(1)若 \(\overrightarrow{O A}=\vec{a},\overrightarrow{O B}=\vec{b},\overrightarrow{O C}=\vec{c}\),用向量 \(\vec{a},\vec{b},\vec{c}\)表示向量 \(\overrightarrow{M N}\);
(2)若四面体\(OABC\)的棱长均为\(1\),求 \(\overrightarrow{M N}\).
解析 (1) \(\overrightarrow{M N}=\overrightarrow{M A}+\overrightarrow{A B}+\overrightarrow{B N}=\dfrac{1}{3} \overrightarrow{O A}+(\overrightarrow{O B-O A})+\dfrac{1}{2}(\overrightarrow{O C}-\overrightarrow{O B})\)
\(=\dfrac{1}{3} \vec{a}+(\vec{b}-\vec{a})+\dfrac{1}{2}(\vec{c}-\vec{b})=-\dfrac{2}{3} \vec{a}+\dfrac{1}{2} \vec{b}+\dfrac{1}{2} \vec{c}\).
(2)\(∵\)四面体的棱长都是\(1\),\(∴\vec{a},\vec{b},\vec{c}\) 的两两夹角都是\(60^∘\),
\(\therefore \vec{a} \cdot \vec{b}=\dfrac{1}{2},\vec{a} \cdot \vec{c}=\dfrac{1}{2},\vec{b} \cdot \vec{c}=\dfrac{1}{2}\),
\(\therefore|\overrightarrow{M N}|=\sqrt{\overrightarrow{M N}^{2}}=\sqrt{\left(-\dfrac{2}{3} \vec{a}+\dfrac{1}{2} \vec{b}+\dfrac{1}{2} \vec{b}\right)^{2}}=\dfrac{\sqrt{19}}{6}\).
【典题2】 如图,平行六面体\(ABCD-A_1 B_1 C_1 D_1\)的底面\(ABCD\)是菱形,且\(∠C_1 CB=∠C_1 CD=∠BCD=60^∘\),\(CD=CC_1\),求证\(CA_1⊥\)平面\(C_1 BD\).
求证 如图,设\(CD=CB=CC_1=a\),令 \(\overrightarrow{C D}=\vec{a},\overrightarrow{C B}=\vec{b},\overrightarrow{C C_{1}}=\vec{c}\),
则 \(\overrightarrow{B D}=\vec{a}-\vec{b}\),\(\overrightarrow{C A_{1}}=\overrightarrow{C D}+\overrightarrow{C B}+\overrightarrow{C C_{1}}=\vec{a}+\vec{b}+\vec{c}\),
\(\therefore \overrightarrow{C A_{1}} \cdot \overrightarrow{B D}=(\vec{a}+\vec{b}+\vec{c})(\vec{a}-\vec{b})=\vec{a} \cdot \vec{a}-\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{a}-\vec{b} \cdot \vec{b}+\vec{c} \cdot \vec{a}-\vec{c} \cdot \vec{b}\),
又 \(\vec{a} \cdot \vec{a}=\vec{b} \cdot \vec{b}=\vec{c} \cdot \vec{c}=a^{2},\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{a} \cdot \vec{c}=\dfrac{1}{2} a^{2}\),
\(\therefore \overrightarrow{C A_{1}} \cdot \overrightarrow{B D}=0\),\(\therefore \overrightarrow{C A_{1}} \perp \overrightarrow{B D}\),\(\therefore C A_{1} \perp B D\),
同理可证\(CA_1⊥C_1 B\),
又\(C_1 B∩BD=B\),\(C_1 B,BD⊂\)平面\(C_1 BD\),
\(∴CA_1⊥\)平面\(C_1 BD\).
【典题3】 如图,空间四边形\(OABC\)的各边及对角线长都为\(2\),\(E\)是\(AB\)的中点,\(F\)在\(OC\)上,且 \(\overrightarrow{O F}=2 \overrightarrow{F C}\).
(1)用 \(\{\overrightarrow{O A},\overrightarrow{O B},\overrightarrow{O C}\}\)表示 \(\overrightarrow{E F}\);
(2)求异面直线\(OA\)与\(EF\)所成角的余弦值.
解析 (1)因为\(E\)是\(AB\)的中点,\(F\)在\(OC\)上,且 \(\overrightarrow{O F}=2 \overrightarrow{F C}\),
所以 \(\overrightarrow{O E}=\dfrac{1}{2}(\overrightarrow{O A}+\overrightarrow{O B}),\overrightarrow{O F}=\dfrac{2}{3} \overrightarrow{O C}\),
于是 \(\overrightarrow{E F}=\overrightarrow{O F}-\overrightarrow{O E}=\dfrac{2}{3} \overrightarrow{O C}-\dfrac{1}{2}(\overrightarrow{O A}+\overrightarrow{O B})=-\dfrac{1}{2} \overrightarrow{O A}-\dfrac{1}{2} \overrightarrow{O B}+\dfrac{2}{3} \overrightarrow{O C}\),
(2)由(1)知 \(\overrightarrow{E F}=\overrightarrow{O F}-\overrightarrow{O E}=\dfrac{2}{3} \overrightarrow{O C}-\dfrac{1}{2}(\overrightarrow{O A}+\overrightarrow{O B})=-\dfrac{1}{2} \overrightarrow{O A}-\dfrac{1}{2} \overrightarrow{O B}+\dfrac{2}{3} \overrightarrow{O C}\)\(\overrightarrow{E F}=\overrightarrow{O F}-\overrightarrow{O E}=\dfrac{2}{3} \overrightarrow{O C}-\dfrac{1}{2}(\overrightarrow{O A}+\overrightarrow{O B})=-\dfrac{1}{2} \overrightarrow{O A}-\dfrac{1}{2} \overrightarrow{O B}+\dfrac{2}{3} \overrightarrow{O C}\)
\(=-\dfrac{1}{2} \times 4-\dfrac{1}{2} \times 2 \times 2 \times \cos 60^{\circ}+\dfrac{2}{3} \times 2 \times 2 \times \cos 60^{\circ}=-\dfrac{5}{3}\)
\(\therefore|\overrightarrow{O A}| \cdot|\overrightarrow{E F}| \cos <\overrightarrow{O A},\overrightarrow{E F}>=-\dfrac{5}{3}\),
又有 \(C E=\sqrt{3},O F=\dfrac{4}{3},O E=\sqrt{3},\quad O C=2\),
在\(∆OEC\)中,\(\cos \angle C O E=\dfrac{O C^{2}+O E^{2}-E C^{2}}{2 O C \cdot O C}=\dfrac{\sqrt{3}}{3}\),
在\(∆OEF\)中,得 \(E F^{2}=O E^{2}+O F^{2}-2 O E \cdot O F \cdot \cos \angle C O E=\dfrac{19}{9}\),
\(\therefore E F=\dfrac{\sqrt{19}}{3}\)
又 \(|\overrightarrow{O A}| \cdot|\overrightarrow{E F}| \cos <\overrightarrow{O A},\overrightarrow{E F}>=-\dfrac{5}{3}\),
\(\therefore 2 \times \dfrac{\sqrt{19}}{3} \cos \langle\overrightarrow{O A},\overrightarrow{E F}\rangle=-\dfrac{5}{3}\),
\(\therefore \cos \langle\overrightarrow{O A},\overrightarrow{E F}\rangle=-\dfrac{5 \sqrt{19}}{38}\).
\(∴\)异面直线\(OA\)与\(EF\)所成角的余弦值为 \(\dfrac{5 \sqrt{19}}{38}\).
巩固练习
1 如图,三棱柱\(ABC-A_1 B_1 C_1\)的所有棱长都相等,\(∠A_1 AB=∠A_1 AC=60^∘\),点\(M\)为\(△ABC\)的重心,\(AM\)的延长线交\(BC\)于点\(N\),连接\(A_1 M\).设 \(\overrightarrow{A B}=\vec{a},\overrightarrow{A C}=\vec{b},\overrightarrow{A_{1} A}=\vec{c}\).
(1)用 \(\vec{a},\vec{b},\vec{c}\)表示 \(\overrightarrow{A_{1} M}\);
(2)证明:\(A_1 M⊥AB\).
2 已知:正四面体\(ABCD\)(所有棱长均相等)的棱长为\(1\),\(E、F、G、H\)分别是四面体\(ABCD\)中各棱的中点,设: \(\overrightarrow{A B}=\vec{a},\overrightarrow{A C}=\vec{b},\overrightarrow{A D}=\vec{c}\),试采用向量法解决下列问题
(1)求 \(|\overrightarrow{E F}|\)的模长;
(2)求 \(\overrightarrow{E F},\overrightarrow{G H}\)的夹角.
3 如图,在棱长为\(1\)的正方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(E,F\)分别为\(DD_1\),\(BD\)的中点,点 \(G\)在\(CD\)上,且 \(C G=\dfrac{1}{4} C D\).
(1)求证: \(EF⊥B_1 C\);\(\qquad \qquad\)(2) 求\(EF\)与\(C_1 G\)所成角的余弦值.
4 已知四面体中三组相对棱的中点间的距离都相等,求证: 这个四面体相对的棱丙两垂直.
已知:如图,四面体\(ABCD\),\(E,F,G,H,K,M\)分别为棱\(AB,BC,CD,DA,BD,AC\)的中点,且\(|EG|=|FH|=|KM|\).
求证 \(AB⊥CD\),\(AC⊥BD\),\(AD⊥BC\).
参考答案
-
答案 (1) \(\overrightarrow{A_{1} M}=\dfrac{1}{3} \vec{a}+\dfrac{1}{3} \vec{b}+\vec{c}\)(2)略
解析 (1)因为\(△ABC\)为正三角形,点\(M\)为\(△ABC\)的重心,所以\(N\)为\(BC\)的中点,
所以 \(\overrightarrow{A N}=\dfrac{1}{2} \overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{A C}\),\(\overrightarrow{A M}=\dfrac{2}{3} \overrightarrow{A N}\),
所以 \(\overrightarrow{A_{1} M}=\overrightarrow{A_{1} A}+\overrightarrow{A M}=-\overrightarrow{A A_{1}}+\dfrac{2}{3} \overrightarrow{A N}\)\(=-\overrightarrow{A A_{1}}+\dfrac{1}{3} \overrightarrow{A B}+\dfrac{1}{3} \overrightarrow{A C}=\dfrac{1}{3} \vec{a}+\dfrac{1}{3} \vec{b}+\vec{c}\).
(2)设三棱柱的棱长为\(m\),
则 \(\overrightarrow{A_{1} M} \cdot \overrightarrow{A B}=\left(\dfrac{1}{3} \vec{a}+\dfrac{1}{3} \vec{b}+\vec{c}\right) \cdot \vec{a}=\dfrac{1}{3} \vec{a}^{2}+\dfrac{1}{3} \vec{a} \cdot \vec{b}+\vec{c} \cdot \vec{a}\)\(=\dfrac{1}{3} m^{2}+\dfrac{1}{3} m^{2} \times \dfrac{1}{2}-m^{2} \times \dfrac{1}{2}=0\),
所以\(A_1 M⊥AB\). -
答案 (1) \(\dfrac{\sqrt{2}}{2}\) (2)\(90°\)
解析 (1)如图所示,
正四面体\(ABCD\)(所有棱长均相等)的棱长为\(1\),\(E、F、G、H\)分别是四面体\(ABCD\)中各棱的中点,\(\overrightarrow{A B}=\vec{a},\overrightarrow{A C}=\vec{b},\overrightarrow{A D}=\vec{c}\),
\(\therefore \overrightarrow{B E}=\dfrac{1}{2} \overrightarrow{B C}=\dfrac{1}{2}(\overrightarrow{A C}-\overrightarrow{A B})=\dfrac{1}{2}(\vec{b}-\vec{a})\),\(\overrightarrow{A F}=\dfrac{1}{2} \overrightarrow{A D}=\dfrac{1}{2} \vec{C}\);
\(\therefore \overrightarrow{E F}=\overrightarrow{E B}+\overrightarrow{B A}+\overrightarrow{A F}=-\dfrac{1}{2}(\vec{b}-\vec{a})-\vec{a}+\dfrac{1}{2} \vec{c}=\dfrac{1}{2}(\vec{c}-\vec{a}-\vec{b})\),
\(\therefore|\overrightarrow{E F}|=\dfrac{1}{2} \sqrt{(\vec{c}-\vec{a}-\vec{b})^{2}}\)
\(=\dfrac{1}{2} \sqrt{\vec{c}^{2}+\vec{a}^{2}+\overrightarrow{b^{2}}-2 \vec{a} \cdot \vec{c}-2 \vec{b} \cdot \vec{c}+2 \vec{a} \cdot \vec{b}}\)
\(=\dfrac{1}{2} \sqrt{1+1+1-2 \times 1 \times 1 \cdot \cos 60^{\circ}-2 \times 1 \times 1 \cdot \cos 60^{\circ}+2 \times 1 \times 1 \cdot \cos 60^{\circ}}\)
\(=\dfrac{\sqrt{2}}{2}\);
(2)正四面体\(ABCD\)中,\(\overrightarrow{E F}=\dfrac{1}{2}(\vec{c}-\vec{a}-\vec{b})\),\(|\overrightarrow{E F}|=\dfrac{\sqrt{2}}{2}\);
同理,\(\overrightarrow{G H}=\dfrac{1}{2}(\vec{b}+\vec{c}-\vec{a})\),\(|\overrightarrow{G H}|=\dfrac{\sqrt{2}}{2}\);
\(\therefore \cos <\overrightarrow{E F},\overrightarrow{G H} \geq \dfrac{\overrightarrow{E F} \cdot \overrightarrow{G H}}{|\overrightarrow{E F}| \times|\overrightarrow{G H}|}\)\(=\dfrac{\dfrac{1}{2}(\vec{c}-\vec{a}-\vec{b}) \cdot \dfrac{1}{2}(\vec{b}+\vec{c}-\vec{a})}{\dfrac{\sqrt{2}}{2} \times \dfrac{\sqrt{2}}{2}}\)
\(=\dfrac{1}{2}\left[(\vec{c}-\vec{a})^{2}-\vec{b}^{2}\right]=\dfrac{1}{2}\left[\vec{c}^{2}+\vec{a}^{2}-2 \vec{c} \cdot \vec{a}-\vec{b}^{2}\right]\)\(=\dfrac{1}{2}\left[1+1-2 \times 1 \times 1 \cos 60^{\circ}-1\right]=0\),
\(∴\overrightarrow{E F},\overrightarrow{G H}\)的夹角为\(90°\).
-
答案 (1) 略 (2) \(\dfrac{\sqrt{51}}{17}\)
解析 (1)证明 设 \(\overrightarrow{D A}=\vec{a},\overrightarrow{D C}=\vec{b},\overrightarrow{D D_{1}}=\vec{c}\),
则 \(\overrightarrow{E F}=\overrightarrow{D F}-\overrightarrow{D E}=\dfrac{1}{2} \overrightarrow{D B}-\dfrac{1}{2} \overrightarrow{D D_{1}}=\dfrac{1}{2}(\overrightarrow{D A}+\overrightarrow{D C})-\dfrac{1}{2} \overrightarrow{D D_{1}}\)\(=\dfrac{1}{2}(\vec{a}+\vec{b})-\dfrac{1}{2} \vec{c}=\dfrac{1}{2}(\vec{a}+\vec{b}-\vec{c})\),
\(\overrightarrow{B_{1} C}=\overrightarrow{A_{1} D}=-\overrightarrow{D A_{1}}=-\left(\overrightarrow{D A}+\overrightarrow{D D}_{1}\right)=-(\vec{a}+\vec{c})\)
\(\because \overrightarrow{E F} \cdot \overrightarrow{B_{1} C}=\dfrac{1}{2}(\vec{a}+\vec{b}-\vec{c}) \cdot[-(\vec{a}+\vec{c})]\)
\(=-\dfrac{1}{2}\left(\vec{a}^{2}+\vec{a} \cdot \vec{c}+\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}-\vec{a} \cdot \vec{c}-\vec{c}^{2}\right)\)
\(=-\dfrac{1}{2}(1+0+0+0-0-1)=0\),
\(\therefore \overrightarrow{E F} \perp \overrightarrow{B_{1} C}\),\(∴EF⊥B_1 C\).
(2)解 由(1)知 \(\overrightarrow{E F}=\dfrac{1}{2}(\vec{a}+\vec{b}-\vec{c})\),\(\overrightarrow{G C}_{1}=\overrightarrow{G C}+\overrightarrow{C C_{1}}=\dfrac{1}{4} \overrightarrow{D C}+\overrightarrow{C C_{1}}=\dfrac{1}{4} \vec{b}+\vec{c}\),
又 \(|\overrightarrow{E F}|=\dfrac{\sqrt{3}}{2}\),\(\left|\overrightarrow{G C_{1}}\right|=\dfrac{\sqrt{17}}{4}\)
\(\overrightarrow{E F} \cdot \overrightarrow{G C_{1}}=\dfrac{1}{2}(\vec{a}+\vec{b}-\vec{c}) \cdot\left(\dfrac{1}{4} \vec{b}+\vec{c}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{4} \vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}+\dfrac{1}{4} \vec{b}^{2}+\vec{b} \cdot \vec{c}-\dfrac{1}{4} \vec{b} \cdot \vec{c}-\vec{c}^{2}\right)\)
\(=\dfrac{1}{2}\left(0+0+\dfrac{1}{4}+0-0-1\right)=\dfrac{1}{2} \times\left(-\dfrac{3}{4}\right)=-\dfrac{3}{8}\),
\(\cos \left\langle\overrightarrow{E F},\overrightarrow{G C_{1}}\right\rangle=\dfrac{\overrightarrow{E F} \cdot \overrightarrow{G C_{1}}}{|\overrightarrow{E F}|\left|\overrightarrow{G C_{1}}\right|}=\dfrac{-\dfrac{3}{8}}{\dfrac{\sqrt{3}}{2} \times \dfrac{\sqrt{17}}{4}}=-\dfrac{\sqrt{51}}{17}\),
\(∴EF\)与\(C_1 G\)所成角的余弦值为\(\dfrac{\sqrt{51}}{17}\). -
证明 设 \(\overrightarrow{A B}=\vec{a},\overrightarrow{A C}=b,\overrightarrow{A D}=c\),
则 \(\overrightarrow{E G}=\overrightarrow{A G}-\overrightarrow{A E}=\dfrac{1}{2}(\overrightarrow{A C}+\overrightarrow{A D})-\dfrac{1}{2} \overrightarrow{A B}=-\dfrac{1}{2} \vec{a}+\dfrac{1}{2} \vec{b}+\dfrac{1}{2} \vec{c}\)\(=\dfrac{1}{2}(-\vec{a}+\vec{b}+\vec{c})\),
\(\overrightarrow{F H}=\overrightarrow{A H}-\overrightarrow{A F}=\dfrac{1}{2} \overrightarrow{A D}-\dfrac{1}{2}(\overrightarrow{A B}+\overrightarrow{A C})=\dfrac{1}{2} \vec{c}-\dfrac{1}{2}(\vec{a}+\vec{b})\)\(=\dfrac{1}{2}(-\vec{a}-\vec{b}+\vec{c})\),
\(\overrightarrow{K M}=\overrightarrow{A M}-\overrightarrow{A K}=\dfrac{1}{2} \overrightarrow{A C}-\dfrac{1}{2}(\overrightarrow{A B}+\overrightarrow{A D})=\dfrac{1}{2} \vec{b}-\dfrac{1}{2}(\vec{a}+\vec{c})\)\(=\dfrac{1}{2}(-\vec{a}+\vec{b}-\vec{c})\),
\(\because|\overrightarrow{E G}|=|\overrightarrow{F H}|\),\(\therefore\left|\dfrac{1}{2}(-\vec{a}+\vec{b}+\vec{c})\right|=\left|\dfrac{1}{2}(-\vec{a}-\vec{b}+\vec{c})\right|\),
\(\therefore(-\vec{a}+\vec{b}+\vec{c})^{2}=(-\vec{a}-\vec{b}+\vec{c})^{2}\),
\(\therefore \vec{a}^{2}+\vec{b}^{2}+\vec{c}^{2}-2 \vec{a} \cdot \vec{b}-2 \vec{a} \cdot \vec{c}+2 \vec{b} \cdot \vec{c}\)\(=\vec{a}^{2}+\vec{b}^{2}+\vec{c}^{2}+2 \vec{a} \cdot \vec{b}-2 \vec{a} \cdot \vec{c}-2 \vec{b} \cdot \vec{c}\),
\(\therefore 4 \vec{a} \cdot \vec{b}=4 \vec{b} \cdot \vec{c}\),\(\therefore \vec{a} \cdot \vec{b}-\vec{b} \cdot \vec{c}=0,\therefore \vec{b} \cdot(\vec{a}-\vec{c})=0\).
又 \(\vec{b}=\overrightarrow{A C}\),\(\vec{a}-\vec{c}=\overrightarrow{D B}\),\(\therefore \overrightarrow{A C} \cdot \overrightarrow{D B}=0\),
\(\therefore \overrightarrow{A C} \perp \overrightarrow{D B}\),\(∴AC⊥DB\),同理可证\(AD⊥BC\),\(AB⊥CD\),
\(∴\)这个四面体相对的棱丙两垂直.
分层练习
【A组---基础题】
1 已知\(O,A,B,C\)为空间四点,且向量 \(\overrightarrow{O A},\overrightarrow{O B},\overrightarrow{O C}\)不能构成空间的一个基底,则一定有( )
A. \(\overrightarrow{O A},\overrightarrow{O B},\overrightarrow{O C}\)共线 \(\qquad \qquad \qquad \qquad\) B.\(O,A,B,C\)中至少有三点共线
C. \(\overrightarrow{O A}+\overrightarrow{O B}\)与 \(\overrightarrow{O C}\)共线 \(\qquad \qquad \qquad \qquad\) D.\(O,A,B,C\)四点共面
2 \(\{\vec{a},\vec{b},\vec{c}\}\)是空间向量的一个基底,设 \(\vec{p}=\vec{a}+\vec{b}\),\(\vec{q}=\vec{b}+\vec{c}\),\(\vec{r}=\vec{c}+\vec{a}\),给出下列向量组:
① \(\{\vec{a},\vec{b},\vec{p}\}\),② \(\{\vec{b},\vec{c},\vec{r}\}\),③ \(\{\vec{p},\vec{q},\vec{r}\}\),④ \(\{\vec{p},\vec{q},\vec{a}+\vec{b}+\vec{c}\}\),其中可以作为空间向量基底的向量组有( )组.
A.\(1\) \(\qquad \qquad \qquad \qquad\) B.\(2\) \(\qquad \qquad \qquad \qquad\) C.\(3\) \(\qquad \qquad \qquad \qquad\) D.\(4\)
3 在平行六面体\(ABCD-A_1 B_1 C_1 D_1\)中,\(M\)为\(AC\)与\(BD\)的交点,若 \(\overrightarrow{A_{1} B_{1}}=\vec{a},\overrightarrow{A_{1} D_{1}}=\vec{b},\overrightarrow{A_{1} A}=\vec{c}\),则下列向量运算不正确的是( )
A. \(\overrightarrow{B_{1} M}=-\dfrac{1}{2} \vec{a}+\dfrac{1}{2} \vec{b}+\vec{c}\) \(\qquad \qquad \qquad \qquad\) B. \(\overrightarrow{B_{1} D}=-\vec{a}+\vec{b}+\vec{c}\)
C. \(\overrightarrow{A_{1} C}=\vec{a}+\vec{b}+\vec{c}\) \(\qquad \qquad \qquad \qquad\) D. \(\overrightarrow{A_{1} M}=-\dfrac{1}{2} \vec{a}-\dfrac{1}{2} \vec{b}+\vec{c}\)
4 在正四面体\(OABC\)中,\(E,F,G,H\)分别是\(OA,AB,BC,OC\)的中点.设 \(\overrightarrow{O A}=\vec{a},\overrightarrow{O B}=\vec{b},\overrightarrow{O C}=\vec{c}\)
(1)用 \(\vec{a},\vec{b},\vec{c}\)表示 \(\overrightarrow{E F},\overrightarrow{F G}\);
(2)求证:\(EF⊥FG\);
(3)求证:\(E,F,G,H\)四点共面.
5 如图,一块矿石晶体的形状为四棱柱,底面\(ABCD\)是正方形,\(CC_1=3,CD=2\),且\(∠C_1 CB=∠C_1 CD=60^∘\).
(1)设 \(\overrightarrow{C D}=\vec{a},\overrightarrow{C B}=\vec{b},\overrightarrow{C C_{1}}=\vec{c}\),试用 \(\vec{a},\vec{b},\vec{c}\)表示 \(\overrightarrow{A_{1} C}\);
(2)\(O\)为四棱柱的中心,求\(CO\)的长;
(3)求证:\(A_1 C⊥BD\).
6 如图,在平行六面体\(ABCD-A' B' C' D'\)中,\(AB=2\),\(AD=2\),\(AA'=3\),\(∠BAD=∠BAA'=∠DAA'=60^∘\),求\(BC'\)与\(CA'\)所成角的余弦值.
参考答案
-
答案 \(D\)
解析 由于向量 \(\overrightarrow{O A},\overrightarrow{O B},\overrightarrow{O C}\)不能构成空间的一个基底知 \(\overrightarrow{O A},\overrightarrow{O B},\overrightarrow{O C}\)共面,
所以\(O,A,B,C\)四点共面,故选:\(D\). -
答案 \(C\)
解析 \(∵\{\vec{a},\vec{b},\vec{c}\}\)是空间向量的一个基底,设 \(\vec{p}=\vec{a}+\vec{b},\vec{q}=\vec{b}+\vec{c},\vec{r}=\vec{c}+\vec{a}\),
① \(\{\vec{a},\vec{b},\vec{p}\}\),不可以作为基底,因为 \(\vec{p}=\vec{a}+\vec{b}\),
② \(\{\vec{b},\vec{c},\vec{r}\}\),可以作为空间向量的基底,因为三向量不共面.
③ \(\{\vec{p},\vec{q},\vec{r}\}\),此向量组也可以作为空间向量的一组基底,因为其中任意一个向量都不能用另两个向量的线性组合表示出来,三向量不共面;
④ \(\{\vec{p},\vec{q},\vec{a}+\vec{b}+\vec{c}\}\),此向量组也可以作为空间向量的一组基底,因为其中任意一个向量都不能用另两个向量的线性组合表示出来,三向量不共面.
综上②③④是正确的
故选:\(C\). -
答案 \(D\)
解析 由已知得: \(-\dfrac{1}{2} \vec{a}+\dfrac{1}{2} \vec{b}+\vec{c}=\dfrac{1}{2} \vec{b}+\vec{c}-\dfrac{1}{2} \vec{a}=\overrightarrow{B_{1} M}\),故\(A\)正确;
\(-\vec{a}+\vec{b}+\vec{c}=\overrightarrow{B_{1} A_{1}}+\overrightarrow{A_{1} D}=\overrightarrow{B_{1} D}\),故\(B\)正确;
\(\vec{a}+\vec{b}+\vec{c}=\overrightarrow{A_{1} C}\),故\(C\)正确;
\(-\dfrac{1}{2} \vec{a}+\dfrac{1}{2} \vec{b}+\vec{c}=\dfrac{1}{2} \vec{b}+\vec{c}-\dfrac{1}{2} \vec{a}=\overrightarrow{B_{1} M}\),故\(D\)错误.
故选:\(D\). -
答案 (1) \(\overrightarrow{E F}=\dfrac{1}{2} \vec{b} ; \quad \overrightarrow{F G}=\dfrac{1}{2} \vec{c}-\dfrac{1}{2} \vec{a}\)(2) 略 (3) 略
解析 (1)解:由题意,\(\overrightarrow{E F}=\dfrac{1}{2} \overrightarrow{O B}=\dfrac{1}{2} \vec{b}\); \(\overrightarrow{F G}=\dfrac{1}{2} \overrightarrow{A C}=\dfrac{1}{2} \overrightarrow{O C}-\dfrac{1}{2} \overrightarrow{O A}=\dfrac{1}{2} \vec{c}-\dfrac{1}{2} \vec{a}\);
(2)证明:设四面体的棱长为\(a\),则 \(\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}=\vec{b} \cdot \vec{c}=\dfrac{a^{2}}{2}\),
所以 \(\overrightarrow{E F} \cdot \overrightarrow{F G}=\dfrac{1}{2} \vec{b} \cdot \dfrac{1}{2}(\vec{c}-\vec{a})=\dfrac{1}{4}(\vec{b} \cdot \vec{c}-\vec{a} \cdot \vec{b})=0\),
故\(EF⊥FG\);
(3)证明:因为 \(\overrightarrow{E G}=\overrightarrow{O G}-\overrightarrow{O E}=\dfrac{1}{2}(\vec{b}+\vec{c}-\vec{a})\),
\(\overrightarrow{E H}=\overrightarrow{O H}-\overrightarrow{O E}=\dfrac{1}{2}(\overrightarrow{O C}-\overrightarrow{O A})=\dfrac{1}{2}(\vec{c}-\vec{a})\),
又 \(\overrightarrow{E F}=\dfrac{1}{2} \vec{b}\),所以 \(\overrightarrow{E G}=\overrightarrow{E F}+\overrightarrow{E H}\),故\(E,F,G,H\)四点共面. -
答案 (1) \(\overrightarrow{A_{1} C}=-\vec{a}-\vec{b}-\vec{c}\)(2) \(\dfrac{\sqrt{29}}{2}\) (3)略
解析 (1)由 \(\overrightarrow{C D}=\vec{a},\overrightarrow{C B}=\vec{b},\overrightarrow{C C_{1}}=\vec{c}\),得 \(\overrightarrow{C A_{1}}=\vec{a}+\vec{b}+\vec{c}\).所以 \(\overrightarrow{A_{1} C}=-\vec{a}-\vec{b}-\vec{c}\).
(2)\(O\)为四棱柱的中心,即\(O\)为线段\(A_1 C\)的中点.
由已知条件,得 \(|\vec{a}|=|\vec{b}|=2\),\(|\vec{c}|=3\),\(\vec{a} \cdot \vec{b}=0\),\(\langle\vec{a},\vec{c}\rangle=60^{\circ}\),\(\langle\vec{b},\vec{c}\rangle=60^{\circ}\).
根据向量加减法得 \(\overrightarrow{B D}=\vec{a}-\vec{b}\),
\(\overrightarrow{C A_{1}}=\vec{a}+\vec{b}+\vec{c} \cdot\left|\overrightarrow{C A_{1}}\right|^{2}={\overrightarrow{C A_{1}}}^{2}=(\vec{a}+\vec{b}+\vec{c})^{2}\)
\(=\vec{a}^{2}+\vec{b}^{2}+\vec{c}^{2}+2 \vec{a} \cdot \vec{b}+2 \vec{b} \cdot \vec{c}+2 \vec{a} \cdot \vec{c}\),
\(=2^{2}+2^{2}+3^{2}+0+2 \times 3 \times 2 \times \cos 60^{\circ}+2 \times 3 \times 2 \times \cos 60^{\circ}=29\)
\(∴A_1 C\)的长为 \(\sqrt{29}\).所以 \(C O=\dfrac{\sqrt{29}}{2}\).
(3) \(\because \overrightarrow{C A_{1}} \cdot \overrightarrow{B D}=(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{a}-\vec{b})=\vec{a}^{2}+\vec{a} \cdot \vec{c}-\vec{b}^{2}-\vec{b} \cdot \vec{c}\)
\(=2^{2}+2 \times 3 \times \cos 60^{\circ}-2^{2}-2 \times 3 \times \cos 60^{\circ}=0\),
\(∴CA_1⊥BD\). -
答案 \(0\)
解析 设 \(\overrightarrow{A B}=\vec{a},\overrightarrow{A D}=\vec{b},\overrightarrow{A A^{\prime}}=\vec{c}\),则由已知可得 \(|\vec{a}|=|\vec{b}|=2,|\vec{c}|=3\),
\(\because \angle B A D=\angle B A A^{\prime}=\angle D A A^{\prime}=60^{\circ}\),
\(\therefore\langle\vec{a},\vec{b}\rangle=\langle\vec{a},\vec{c}\rangle=\langle\vec{b},\vec{c}\rangle=60^{\circ}\),
\(\therefore \vec{a} \cdot \vec{b}=|\vec{a}| \cdot|\vec{b}| \cos 60^{\circ}=2 \times 2 \times \dfrac{1}{2}=2,\quad \vec{a} \cdot \vec{c}=|\vec{a}| \cdot|\vec{c}| \cos 60^{\circ}\)\(=2 \times 3 \times \dfrac{1}{2}=3\),
\(\vec{b} \cdot \vec{c}=|\vec{b}| \cdot|\vec{c}| \cos 60^{\circ}=2 \times 3 \times \dfrac{1}{2}=3\),
在平行六面体 \(ABCD-A' B' C' D'\)中,四边形\(ABCD\)是平行四边形,
\(\therefore \overrightarrow{A C}=\overrightarrow{A B}+\overrightarrow{A D}\),\(\therefore \overrightarrow{C A^{\prime}}=\overrightarrow{A A^{\prime}}-\overrightarrow{A C}=\overrightarrow{A A^{\prime}}-\overrightarrow{A B}-\overrightarrow{A D}=\vec{c}-\vec{a}-\vec{b}\),
\(\therefore\left|\overrightarrow{C A^{\prime}}\right|=|\vec{c}-\vec{a}-\vec{b}|=\sqrt{|\vec{c}-\vec{a}-\vec{b}|^{2}}\)\(=\sqrt{|\vec{c}|^{2}+|\vec{a}|^{2}+|\vec{b}|^{2}+2 \vec{a} \cdot \vec{b}-2 \vec{a}}\)
\(=\sqrt{3^{2}+2^{2}+2^{2}+2 \times 2-2 \times 3-2 \times 3}=3\).
在平行六面体 \(ABCD-A' B' C' D'\)中,四边形\(BCC' B'\)是平行四边形,
且 \(\overrightarrow{B B^{\prime}}=\overrightarrow{A A^{\prime}}=\vec{c}\),\(\overrightarrow{B C}=\overrightarrow{A D}=\vec{b}\),\(\therefore \overrightarrow{B C^{\prime}}=\overrightarrow{B C}+\overrightarrow{B B^{\prime}}=\vec{b}+\vec{c}\),
\(\therefore\left|\overrightarrow{B C^{\prime}}\right|=|\vec{b}+\vec{c}|=\sqrt{|\vec{b}+\vec{c}|^{2}}=\sqrt{|\vec{b}|^{2}+|\vec{c}|^{2}+2 \vec{b} \cdot \vec{c}}\)\(=\sqrt{2^{2}+3^{2}+2 \times 3}=\sqrt{19}\).
\(\therefore \overrightarrow{B C^{\prime}} \cdot \overrightarrow{C A^{\prime}}=(\vec{b}+\vec{c})(\vec{c}-\vec{a}-\vec{b})=|\vec{c}|^{2}-|\vec{b}|^{2}-\vec{a} \cdot \vec{b}-\vec{a} \cdot \vec{c}\)\(=3^{2}-2^{2}-2-3=0\),
\(\therefore \cos <\overrightarrow{B C^{\prime}},\overrightarrow{C A^{\prime}}>=\dfrac{\overrightarrow{B C^{\prime}} \cdot \overrightarrow{C A^{\prime}}}{\left|\overrightarrow{B C^{\prime}}\right| \cdot\left|\overrightarrow{C A^{\prime}}\right|}=\dfrac{0}{\sqrt{19} \times 3}=0\),
\(\therefore B C^{\prime}\) 与 \(C A^{\prime}\)所成角的余弦值为\(0\).
【B组---提高题】
1 已知非零向量 \(\vec{a}=3 \vec{m}-2 \vec{n}-4 \vec{p}\),\(\vec{b}=(x+1) \vec{m}+8 \vec{n}+2 y \vec{p}\),且 \(\vec{m},\vec{n},\vec{p}\)不共面.若 \(\vec{a} / / \vec{b}\),则\(x+y=\)( )
A.\(-13\) \(\qquad \qquad \qquad \qquad\) B.\(-5\) \(\qquad \qquad \qquad \qquad\) C.\(8\) \(\qquad \qquad \qquad \qquad\) D.\(13\)
2 在平行六面体\(ABCD-A_1 B_1 C_1 D_1\)中,底面\(ABCD\)是边长为\(1\)的正方形,\(\angle B A A_{1}=\angle D A A_{1}=\dfrac{\pi}{3}\),\(A C_{1}=\sqrt{26}\).
(1)求侧棱\(AA_1\)的长;
(2)\(M,N\)分别为\(D_1 C_1,C_1 B_1\)的中点,求 \(\overrightarrow{A C_{1}} \cdot \overrightarrow{M N}\)及两异面直线\(AC_1\)和\(MN\)的夹角.
3 已知正三棱锥\(P-ABC\)的侧棱长为\(2\),过其底面中心\(O\)作动平面\(α\)交线段\(PC\)于点\(S\),分别交\(PA,PB\)的延长线于点\(M,N\),求 \(\dfrac{1}{P S}+\dfrac{1}{P M}+\dfrac{1}{P N}\)的值.
参考答案
-
答案 \(B\)
解析 \(∵ \vec{m},\vec{n},\vec{p}\)不共面,故 \(∵ \vec{m},\vec{n},\vec{p}\)可看作空间向量的一组基底,
\(∵\vec{a} / / \vec{b}\),故存在\(λ≠0\),使得\(\vec{b}=λ\vec{a}\),
即 \((x+1) \vec{m}+8 \vec{n}+2 y \vec{p}=3 \lambda \vec{m}-2 \lambda \vec{n}-4 \lambda \vec{p}\),
\(\therefore\left\{\begin{array}{l} x+1=3 \lambda \\ 8=-2 \lambda \\ 2 y=-4 \lambda \end{array}\right.\),解得 \(\left\{\begin{array}{l} x=-13 \\ y=8 \end{array}\right.\),
则\(x+y=-5\).故选:\(B\). -
答案 (1) \(4\) (2)\(90^∘\)
解析 (1)设侧棱\(AA_1=x\),
\(∵\)在平行六面体\(ABCD-A_1 B_1 C_1 D_1\)中,底面\(ABCD\)是边长为\(1\)的正方形,且\(∠A_1 AD=∠A_1 AB=60^∘\),
\(\therefore \overrightarrow{A B}^{2}=\overrightarrow{A D}^{2}=1\),\(\overrightarrow{A A}_{1}^{2}=x^{2}\),\(\overrightarrow{A B} \cdot \overrightarrow{A D}=0\),\(\overrightarrow{A B} \cdot \overrightarrow{A A_{1}}=\dfrac{x}{2}\),\(\overrightarrow{A D} \cdot \overrightarrow{A A_{1}}=\dfrac{x}{2}\),
又 \(\because \overrightarrow{A C_{1}}=\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{A A_{1}}\),
\(\therefore{\overrightarrow{A C_{1}}}^{2}=\left(\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{A A_{1}}\right)^{2}\)
\(=\overrightarrow{A B}^{2}+\overrightarrow{A D}^{2}+{\overrightarrow{A A_{1}}}^{2}+2 \overrightarrow{A B} \cdot \overrightarrow{A D}+2 \overrightarrow{A B} \cdot \overrightarrow{A A_{1}}+2 \overrightarrow{A D} \cdot \overrightarrow{A A_{1}}\),
\(=26\),
\(∴x^2+2x-24=0\)\(∵x>0,∴x=4\),
即侧棱\(AA_1=4\).
(2) \(\because \overrightarrow{A C_{1}}=\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{A A_{1}}\) ,\(\overrightarrow{M N}=\dfrac{1}{2} \overrightarrow{D B}=\dfrac{1}{2}(\overrightarrow{A B}-\overrightarrow{A D})\)
\(\therefore \overrightarrow{A C_{1}} \cdot \overrightarrow{M N}=\dfrac{1}{2}(\overrightarrow{A B}-\overrightarrow{A D}) \cdot\left(\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{A A}_{1}\right)\),
\(=\dfrac{1}{2}\left(\overrightarrow{A B}^{2}-\overrightarrow{A D}^{2}+\overrightarrow{A B} \cdot \overrightarrow{A A_{1}}-\overrightarrow{A D} \cdot \overrightarrow{A A_{1}}\right)\)\(=\dfrac{1}{2}(1-1+2-2)=0\)
\(∴\)两异面直线\(AC_1\)和\(MN\)的夹角为\(90^∘\). -
答案 \(\dfrac{3}{2}\)
解析 \(∵△ABC\)是等边三角形,\(∴O\)是\(△ABC\)的重心,
延长\(AO\)交\(BC\)于点\(D\),则\(D\)为\(BC\)的中点,
\(\therefore \overrightarrow{A D}=\dfrac{1}{2}(\overrightarrow{A B}+\overrightarrow{A C})\),
故 \(\overrightarrow{P O}=\overrightarrow{P A}+\overrightarrow{A O}=\overrightarrow{P A}+\dfrac{2}{3} \overrightarrow{A D}=\overrightarrow{A P}+\dfrac{1}{3}(\overrightarrow{A B}+\overrightarrow{A C})\)\(=\overrightarrow{P A}+\dfrac{1}{3}(\overrightarrow{P B}-\overrightarrow{P A}+\overrightarrow{P C}-\overrightarrow{P A})\)
\(=\dfrac{1}{3} \overrightarrow{P A}+\dfrac{1}{3} \overrightarrow{P B}+\dfrac{1}{3} \overrightarrow{P C}\),
设 \(\overrightarrow{P A}=x \overrightarrow{P M},\overrightarrow{P B}=y \overrightarrow{P N},\overrightarrow{P C}=z \overrightarrow{P S}\),
则 \(\overrightarrow{P O}=\dfrac{1}{3} x \overrightarrow{P M}+\dfrac{1}{3} y \overrightarrow{P N}+\dfrac{1}{3} z \overrightarrow{P S}\),
\(∵O,M,N,S\)四点共面,\(\therefore \dfrac{1}{3} x+\dfrac{1}{3} y+\dfrac{1}{3} z=1\),即\(x+y+z=3\),
又 \(x=\dfrac{P A}{P M}=\dfrac{2}{P M}\),\(y=\dfrac{P B}{P N}=\dfrac{2}{P N}\),\(z=\dfrac{P C}{P S}=\dfrac{2}{P S}\),
\(\therefore 2\left(\dfrac{1}{P S}+\dfrac{1}{P M}+\dfrac{1}{P N}\right)=3\),
\(\therefore \dfrac{1}{P S}+\dfrac{1}{P M}+\dfrac{1}{P N}=\dfrac{3}{2}\).
【C组---拓展题】
1 如图,在三棱锥\(P-ABC\)中,点\(G\)为\(△ABC\)的重心,点\(M\)在\(PG\)上,且\(PM=3MG\),过点\(M\)任意作一个平面分别交线段\(PA,PB,PC\)于点\(D,E,F\),若 \(\overrightarrow{P D}=m \overrightarrow{P A}\),\(\overrightarrow{P E}=n \overrightarrow{P B}\),\(\overrightarrow{P F}=t \overrightarrow{P C}\),求证: \(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{t}\)为定值,并求出该定值.
参考答案
- 证明 如图示:
连接\(AG\)并延长交\(BC\)于点\(H\),
由题意可令 \(\{\overrightarrow{P A},\overrightarrow{P B},\overrightarrow{P C}\}\)为空间的一个基底,
故 \(\overrightarrow{P M}=\dfrac{3}{4} \overrightarrow{P G}=\dfrac{3}{4}(\overrightarrow{P A}+\overrightarrow{A G})=\dfrac{3}{4} \overrightarrow{P A}+\dfrac{3}{4} \cdot \dfrac{2}{3} \overrightarrow{A H}\)
\(=\dfrac{3}{4} \overrightarrow{P A}+\dfrac{1}{2} \cdot \dfrac{1}{2}(\overrightarrow{A B}+\overrightarrow{A C})=\dfrac{3}{4} \overrightarrow{P A}+\dfrac{1}{4}(\overrightarrow{P B}-\overrightarrow{P A})+\dfrac{1}{4}(\overrightarrow{P C}-\overrightarrow{P A})\)\(=\dfrac{1}{4} \overrightarrow{P A}+\dfrac{1}{4} \overrightarrow{P B}+\dfrac{1}{4} \overrightarrow{P C}\),
连接\(DM\),因为点\(D,E,F,M\)共面,
故存在实数\(λ,μ\),使得 \(\overrightarrow{D M}=\lambda \overrightarrow{D E}+\mu \overrightarrow{D F}\),
即 \(\overrightarrow{P M}-\overrightarrow{P D}=\lambda(\overrightarrow{P E}-\overrightarrow{P D})+\mu(\overrightarrow{P F}-\overrightarrow{P D})\),
故 \(\overrightarrow{P M}=(1-\lambda-\mu) \overrightarrow{P D}+\lambda \overrightarrow{P E}+\mu \overrightarrow{P F}=(1-\lambda-\mu) m \overrightarrow{P A}+\lambda n \overrightarrow{P B}+\mu t \overrightarrow{P C}\)
由空间向量基本定理知 \(\dfrac{1}{4}=(1-\lambda-\mu) m,\dfrac{1}{4}=\lambda n,\dfrac{1}{4}=\mu t\),
故 \(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{t}=4(1-\lambda-\mu)+4 \lambda+4 \mu=4\),为定值.