科学家们经过广泛的实验发现:熔化往往始于固体表面。熔化时,体系由 “固体-气体接触” 变为 "固体-熔化层接触 + 熔化层-气体接触“。如果后者的能量更稳定,则说明熔化的确更容易在表面发生。将这一结论推广到温度低于熔点的情况即可在热力学平衡角度解释预熔现象。下面简要考察这一解释的合理性。
(此处省略两张图)
左边是干燥的冰的固-气热力学平衡,右边是包含了中间层预熔相的热力学平衡。若发生预熔,界面应能满足 \(\gamma_\text{s-g}>\gamma_\text{s-l}+\gamma_\text{l-g}\),式中 \(\text s\)、\(\text l\)、\(\text g\) 分别代表固相、预熔态的液相、气相。定义界面能变 \(\Delta\gamma\),先放着,后面有用
\[\Delta\gamma=\gamma_\text{s-g}+\gamma_\text{s-l}-\gamma_\text{l-g} \]在下面的计算中,不考虑预熔层的准液态和真液态水之间的热力学性质的区别,谁同意,谁反对?
考察预熔层单位面积的自由能,由本体和表面两部分构成
\[G(T,P,d)=\left[\rho_1\mu_1(T,P)\right]d+F_\text{total}(d) \]上式中 \(G\) 为单位面积自由能,\(T\)、\(P\) 为温度压力,\(d\) 为预熔层厚度,\(\rho_1\) 为预熔层中的水分子密度,\(\mu_1(T,P)\) 为本体液态水的化学势,\(F_\text{total}(d)\) 代表单位面积的总超额表面能,它是厚度 \(d\) 的函数。
当 \(d\to0\) 时,相当于没有预熔层,那 \(F_\text{total}(d)=\gamma_\text{s-g}\)。当 \(d\to\infty\) 时,相当于中间就是一层水,那 \(F_\text{total}(d)=\gamma_\text{s-l}+\gamma_\text{l-g}\)。大家想到了什么呢?没错!自然地想到可以定义一个神奇的函数 \(f(x)\),满足 \(f(0)=0\)、\(f(\infty)=1\),即可使得
\[F_\text{total}(d)=\Delta\gamma f(d)+\gamma_\text{s-g} \]从而当 \(d\to0\) 时,\(F_\text{total}(d)=\gamma_\text{s-g}\);当 \(d\to\infty\) 时,\(F_\text{total}(d)=\Delta\gamma+\gamma_\text{s-g}=\gamma_\text{s-l}+\gamma_\text{l-g}\),完美。
我们在小学二年级就学过,化学势是吉布斯自由能对组分粒子数的偏微分,对自由能两边微分得
\[\begin{matrix} \displaystyle\frac1{\rho_1}\frac{\partial G(T,P,d)}{\partial d}=\mu_1(T,P)+\frac1{\rho_1}\frac{\partial F_\text{total}(d)}{\partial d} \\[2ex] \displaystyle\mu(T,P,d)=\mu_1(T,P)+\frac{\Delta\gamma}{\rho_1}\frac{\partial f(d)}{\partial d}=\mu_s(T,P,d) \end{matrix} \]此时的温度可能是略在熔点之下,以熔点为基准,用一下泰勒展开和克拉伯龙方程,易得
\[\begin{aligned} \Delta\mu(T,P)&=\left[\frac{\partial\Delta\mu}{\partial T}\right]_{T_m}\left(T-T_m\right)+\left[\frac{\partial\Delta\mu}{\partial P}\right]_{P_m}\left(P-P_m\right) \\ &=\frac{q_m}{T_m}\left(T-T_m\right)-\left(\frac1{\rho_l}-\frac1{\rho_s}\right)\left(P-P_m\right) \\ &=\kappa_vq_m\frac{T-T_m}{T_m} \end{aligned} \]式中 \(q_m\) 是熔化潜热,\(\kappa_v=1-\dfrac{(\mathrm dP/\mathrm dT)_\text{sg}}{(\mathrm dP/\mathrm dT)_\text{sl}}\)。有的文献里说冰的 \(\kappa_v=1\),反正他说什么就是什么。表面张力在微观层面上本质依然是一种长程分子力,我们认为这种力应当是遵循平方衰减定律的。而 \(f(d)\) 定性代表的是 “本体相对于表面有多重要” 这件事。因此可以认为 \(f(d)\) 对 \(d\) 是平方衰减关系,结合其边界条件,近似认为 \(f(d)=1-\sigma^2/d^2\),式中 \(\sigma\) 代表水分子直径。此时有 \(d=\sigma\) 时,\(f(d)=0\);\(d=\infty\) 时,\(f(d)=1\)。
终于一切准备工作都就绪了!把我们上面所有求出来的东西一股脑代入
\[\mu(T,P,d)=\mu_1(T,P)+\frac{\Delta\gamma}{\rho_1}\frac{\partial f(d)}{\partial d}=\mu_s(T,P,d) \]易得
\[\frac{\Delta\gamma}{\rho_1}\frac{\partial(1-\sigma^2/d^2)}{\partial d}=\kappa_vq_m\frac{T-T_m}{T_m} \]我要变形了
\[d=\left(-\frac{2\sigma^2\Delta\gamma}{\rho_lq_m}\right)^{1/3}\left(\frac{T_m-T}{T_m}\right)^{-1/3} \]至此,我们得到了最终结论:当 \(\boldsymbol{\Delta\gamma<0}\) 时,冰的表面在熔点以下时会发生预熔,产生一个薄层液膜,液膜厚度与温度的关系满足 \(\boldsymbol{d=\left(-\dfrac{2\sigma^2\Delta\gamma}{\rho_lq_m}\right)^{1/3}\left(\dfrac{T_m-T}{T_m}\right)^{-1/3}}\)。
感兴趣的读者也可以计算,如果分子力是短程力,遵循指数衰减 \(\dfrac{\partial f(d)}{\partial d}\propto\exp(-cd)\) 时,厚度 \(d\) 的表达式满足什么规律?结论是 \(d\propto\left\lvert\ln\hspace{-0.25em}\left(\dfrac{T-T_m}{T_m}\right)\right\rvert\)。
标签:Liftshitz,right,partial,text,理论,热力学,Delta,frac,gamma From: https://www.cnblogs.com/laoshan-plus/p/18365008