首页 > 其他分享 >莫比乌斯函数与莫比乌斯反演

莫比乌斯函数与莫比乌斯反演

时间:2024-07-22 11:09:22浏览次数:4  
标签:lfloor frac 乌斯 sum rfloor times mu 反演 莫比

9. 莫比乌斯函数与莫比乌斯反演

9.1 莫比乌斯函数

9.1.1 定义

设 \(\mu\) 为莫比乌斯函数,则有:

\[\mu(x)=\begin{cases}1\qquad (n=1)\\ 0\qquad (∃\ i\ (ki=x,k\in Z\rightarrow \sqrt{i}\in Z))\\ (-1)^{\sum_{i\in prime}[i\mid x]}\end{cases} \]

直观地说,只要 \(x\) 的某个质因子出现的次数超过一次,则有 \(\mu(x)=0\),否则,\(mu(x)\) 即为 \((-1)^{t}\),其中 \(t\) 为 \(x\) 的质因数总数.

9.1.2 性质

\(No.9121\) \(\forall (i,j)=1\rightarrow\mu(i\times j)=\mu(i)\times \mu(j)\)

\[P.9121 \]

若 \(\mu(A)=1\),则有 \(\mu(A)\times \mu(B)=1\times \mu(B)=\mu(1\times B)\),结果成立

若 \(\mu(A)=0\),则有 \(\mu(A)\times\mu(B)=0\),结果成立

否则设 \(A=\prod_{i\in prime}i,B=\prod_{j\in prime}j\ (\forall i\neq j)\),则有 \(\mu(A)\times\mu(B)=\mu(A\times B)\)

\(No.9122\)

\[\sum_{d\mid n}\mu(d)=\begin{cases}1\qquad (n=1)\\0\qquad(n\neq 1)\end{cases} \]

\[P.9122 \]

\(n=0\) 时,原式等于 \(0\)

\(n=1\) 时,原式等于 \(\mu(1)=1\)

否则,设 \(n\) 的唯一分解式为 \(n=\prod_{1\le i\le k}p_{i}^{a_{i}}\),由 \(\mu(n)\neq 0\) 知 \(\forall a_{i}=1\)

显然,\(\forall d\mid n\),有 \(i\) 个质因子的数 \(d\) 有 \(C^{i}_{k}\) 种组合情况,每种组合的值为 \((-1)^{i}\),即:

\[\sum_{d\mid n}\mu(d)=\sum_{0\le i\le k}\{C^{i}_{k}\times (-1)^{i}\} \]

使用二项式定理转化:

\[\sum_{d\mid n}\mu(d)=(1+(-1))^{k}=0^{k} \]

发现此时在定义域 \((k\neq 0)\) 内恒为 \(0\),易知当 \(n\gt 1\) 时,\(k_{n}\ge 1\),因此 \(\mu(n)=0\),证毕.

9.2 莫比乌斯反演

9.2.1 不完全结论

\[f(a,b,k)=\begin{cases}1\qquad((a,b)=k)\\0\end{cases} \]

对于

\[g(n,m,k)=\sum^{n}_{i=1}\sum^{m}_{j=1}f(i,j,k) \]

考虑到

\[g(n,m,k)=\sum^{\lfloor{\frac{n}{k}}\rfloor}_{i=1}\sum^{\lfloor{\frac{m}{k}}\rfloor}_{j-1}f(i,j,1) \]

根据 \(No.9122\) 得出推导式:

\[\sum_{d\mid (a,b)}\mu(d)=\begin{cases}1\qquad ((a,b)=1)\\0\qquad((a,b)\neq 1)\end{cases} \]

代入有:

\[f(i,j,1)=\sum_{d\mid (i,j)}\mu(d) \]

即:

\[g(n,m,k)=\sum^{\lfloor{\frac{n}{k}}\rfloor}_{i=1}\sum^{\lfloor{\frac{m}{k}}\rfloor}_{j-1}=\sum_{d\mid (i,j)}\mu(d) \]

将原式等价转换,可以得到

\[g(n,m,k)=\sum_{d=1}\mu(d)\sum^{\lfloor{\frac{n}{k}}\rfloor}_{i=1}\sum^{\lfloor{\frac{m}{k}}\rfloor}_{j-1}h(i,j) \]

其中

\[h(i,j)=\begin{cases}1\qquad(d\mid i,d\mid j)\\0\end{cases} \]

(可以发现,在这里仅仅是将判断条件与枚举条件互相变换了,而答案是不变的)

在区间 \([1,\lfloor{\frac{n}{k}}\rfloor]\) 中,满足条件 \(d\mid i\) 的 \(i\) 有 \(\lfloor{\frac{n}{kd}}\rfloor\) 个,因此原式可化为

\[g(n,m,k)=\sum_{d=1}\mu(d)\times\lfloor{\frac{n}{kd}}\rfloor\times\lfloor{\frac{m}{kd}}\rfloor \]

可以证明,当 \(d\gt \min(\lfloor{\frac{n}{k}}\rfloor,\lfloor{\frac{m}{k}}\rfloor)\) 时不存在解.

9.2.2 完全结论

博主去学卷积了,学完回来更

标签:lfloor,frac,乌斯,sum,rfloor,times,mu,反演,莫比
From: https://www.cnblogs.com/HaneDaCafe/p/18315650

相关文章

  • Solution Set - 容斥原理/二项式反演
    https://www.becoder.com.cn/contest/5400「BZOJ2863」愤怒的元首题目就是求\(n\)个点DAG的数量。设\(dp_i\)表示\(i\)个点的DAG数量。首先DAG一定存在出度为\(0\)的点,其次删去出度为\(0\)的点,仍构成一个DAG。所以我们可以枚举删去的数量,从而划分子问题。......
  • 基于Python星载气溶胶数据处理与反演分析
    在当前全球气候变化和环境污染问题日益突出的背景下,气溶胶研究显得尤为重要。气溶胶在大气中由直径范围在0.01微米至10微米固体和液体颗粒构成,直接或间接影响地球辐射平衡、气候变化和空气质量。尤其在“碳中和”目标的驱动下,研究气溶胶对“碳中和”的气候影响及其环境效应,不仅......
  • 【笔记】Set - 容斥原理/二项式反演
    https://www.becoder.com.cn/contest/5400「BZOJ2863」愤怒的元首题目就是求\(n\)个点DAG的数量。设\(dp_i\)表示\(i\)个点的DAG数量。首先DAG一定存在出度为\(0\)的点,其次删去出度为\(0\)的点,仍构成一个DAG。所以我们可以枚举删去的数量,从而划分子问题。......
  • 基于MATLAB的从图像反演SAR原始回波【持续更新】
    一、概论当前在网上公开的SAR数据大部分都是聚焦过后的SLC图像,对想研究成像原理的朋友十分不友好,该文章提出了一种基于图像进行反演SAR原始回波的方法。二、SAR原理介绍想要理解SAR的原理,需要先了解两个基本概念1、多普勒效应多普勒效应(Dopplereffect)是为纪念奥地......
  • 莫比乌斯反演
    前置知识:积性函数。定义:一个函数\(f\),若\(\forall\gcd(a,b)=1\),都有\(f(a)\timesf(b)=f(a\timesb)\),则它是积性函数。一个函数\(f\),若\(\forall(a,b)\),都有\(f(a)\timesf(b)=f(a\timesb)\),则它是完全积性函数。正题狄利克雷卷积先放一张图方便下文理解(copyz......
  • 更^{2+eps}炫酷的反演魔术
    参考资料:x义x:更炫酷的反演魔术,x义x:更更炫酷的反演魔术考虑将二项式反演的符号化方法扩展到斯特林反演上。染色问题现有一排\(n\)个格子,每个格子皆可涂成\(c\)种颜色之一。给定集合\(W\),定义一个染色合法当且仅当:对于任意格子,记和它颜色相同的格子有\(x\)个(包括......
  • 莫比乌斯反演学习笔记
    \[\]前段时间学习了莫比乌斯反演,现在补一篇学习笔记吧。Step1:莫比乌斯函数首先我们来定义一下莫比乌斯函数\(\mu\),它的取值如下:\[\mu(n)=\left\{ \begin{array}{ll} 1\qquad\quadn=1\\ (-1)^k\quadn=p_1p_2\cdotsp_k\\ 0\qquad\quadotherwise \end{array}......
  • 二项式反演小记
    篇幅有限,仅记录公式及极简证明。定义\[\begin{aligned}&f(n)=\sum_{i=0}^n(-1)^i{n\choosei}g(i)\Leftrightarrowg(n)=\sum_{i=0}^n(-1)^i{n\choosei}f(i)&(1)\\&f(n)=\sum_{i=0}^n{n\choosei}g(i)\Leftrightarrowg(n)=\sum_{i=0}^n(-1)^{n+i}{n\cho......
  • 算法随笔——数论之莫比乌斯反演
    链接链接2链接3链接4前置知识:数论分块可以求形如:\(\sumf(i)g(\left\lfloorn/i\right\rfloor)\)的东西。原理如下:比如说求$\sum_{i=1}^{10}\left\lfloor10/i\right\rfloor$得到:10532211111可以发现有一些块的数值是一样的。具体一点可以发现\([l......
  • 二项式反演
    二项式反演简介二项式反演可以用来解决一些计数问题,是连接至少/至多与恰好两类函数的桥梁。形式一\[f(n)=\sum_{i=0}^n(-1)^i\binom{n}{i}g(i)\\g(n)=\sum_{i=0}^n(-1)^i\binom{n}{i}f(i)\]证明代\(g(n)\)入第一条式子。\[\begin{aligned}f(n)&=\sum......