首页 > 其他分享 >时域采样定理

时域采样定理

时间:2023-11-22 17:04:14浏览次数:31  
标签:采样 infty frac omega 定理 delta Omega 时域

对于一个信号,我们想对其进行采样转化成数字信号,显然,当我们采样频率越改,我们所能保留的信息越多,但是当高采样频率对我们的采样设备要求也高,我们希望找到采样频率和模拟信号频率之间的一些关系

有模拟信号\(x_{a}(t)\),我们对其进行理想采样,即采样信号\(\hat{x}_{a}{(t) =}x_{a}(t)\sum\limits \delta(t-nT)\)

两边同时进行傅里叶变换有:

\[\hat{X}_{a}(\omega) = \frac{1}{2\pi}[ X(\omega)* \Delta(\omega) ] \]

其中\(\Delta (\omega)\)是周期函数\(\delta_{t}(t)\)的傅里叶变换

对于周期函数\(\delta_{T}(t)\),有傅里叶级数:

\[\delta_{T}(t) = \sum\limits_{n=-\infty }^{\infty} c_{n}e^{jn\Omega_{s}t} \]

\(\Omega_{s}\)是采样角频率,其中的\(c_{n}\)有:

\[\begin{aligned} c_{n} &= \frac{1}{T}\int_{-\frac{T}{2} }^ {\frac{T}{2}}\delta_{T}(t)e^{-j\Omega_{s}t}dt\\ &=\frac{1}{T} \end{aligned} \]

带入上式有:

\[\Delta(w) = \mathcal{F}\left[\frac{1}{T}\sum\limits_{n=-\infty}^{\infty}e^{jn\Omega_{s}t}\right]= \frac{1}{T}\sum\limits_{k=-\infty}^{\infty}2\pi \delta(\omega-k\Omega_{s} ) \]

再带入上式进行卷积运算有:

\[\hat{X}_{a}(\omega) = \frac{1}{T}\sum\limits_{k=-\infty}^{\infty}\int_{-\infty}^{\infty}X_{a}(j\theta)\cdot \delta(j(\omega - \Omega_s)-j\theta)d\theta = \frac{1}{T}\sum\limits_{k=-\infty}^{\infty}X_{a}(j\omega - jk\Omega_{s}) \]

可以看到,在采样周期为T的情况下,采样频率是原频率的一个周期延拓。
可以假设如图,原序列最高频率为 \(\Omega_h\),则要想周期延拓后频率不发生交集,则必须有:

\[\Omega_{s}>2\Omega_h \]

或者:

\[2f_{s}<f_{h} \]

image

至于复原,可以乘以一个适当的傅域“礼帽序列”

标签:采样,infty,frac,omega,定理,delta,Omega,时域
From: https://www.cnblogs.com/C-qian/p/17849733.html

相关文章

  • 向量三点共线定理
    如果ABQ三点共线,则OQ=a*OA+b*OB,且a+b=1,其中O表示不在直线AB上的任意点,当然如果原点不在直线AB上,用原点也是成立的。 参考向量三点共线定理(baidu.com)向量的三点共线定理及应用_百度知道(baidu.com) ......
  • python机器学习算法原理实现——MCMC算法之gibbs采样
    【算法原理】Gibbs采样是一种用于估计多元分布的联合概率分布的方法。在MCNC(Markov Chain Monte Carlo)中,Gibbs采样是一种常用的方法。通俗理解Gibbs采样,可以想象你在一个多维空间中,你需要找到这个空间的某个特定区域(这个区域代表了你感兴趣的分布)。但是,你不能直接看到整个空间,只......
  • 卢卡斯定理/Lucas 定理
    卢卡斯定理/Lucas定理引入求\(C_{n+m}^n\modp\)。\(n,m,p\leq10^5\)。如果直接用阶乘求,可能在阶乘过程中出现了\(p\),而最后的结果没有出现\(p\),导致错误。有两种解决方法:1.求组合数时提前把\(p\)的质因子除掉。2.Lucas定理。所以Lucas定理用于处理模数较小且......
  • 世微 60V高端电流采样降压恒流驱动器 LED车灯备用灯信号灯 AP5179
    产品描述     AP5179是一款连续电感电流导通模式的降压恒流源,用于驱动一颗或多颗串联LED输入电压范围从5V到60V,输出电流最大可达2.0A。根据不同的输入电压和外部器件,可以驱动高达数十瓦的LED。内置功率开关,采用高端电流采样设置LED平均电流,通过DIM引脚可......
  • 初中平面几何定理汇总
    射影定理条件:\(AB\perpBC,BD\perpAC\)。结论:\(AB^2=AD\timesAC\)\(BC^2=CD\timesCA\)\(BD^2=DA\timesDC\)线束定理条件:\(DE//BC\)。结论:\(\dfrac{DF}{FE}=\dfrac{BG}{GC}\)。角平分线定理条件:\(AD\)平分\(\angleBAC\)(或平分其外角)。结论:\(\dfrac{AB......
  • Hall 定理
    Hall定理:Hall定理:设一个二分图,V1<=V2。则V1能完美匹配的条件是,对于所有点集S属于V1,V1能到达V2的点集S2,满足S2>=S1ex_Hall定理:设一个二分图,V1<=V2则,这个图的最大匹配ans=min(|V1-S1|+|S2|)=|V1|-max(|S1|-|S2|)注意:其实这里并不在意V1和V2的相对大小,带S进去看就会发现都可......
  • 应用动量定理处理流体问题
    建立流体模型对于一段流体质量具有连续性,其密度为\(ρ\)流速为\(v\)流体横截面积为\(S\)微元研究微元作用时间:\(Δt\)微元作用长度:\(vΔt\)则对应的质量为:\[Δm=ρSvΔt\]随后建立方程,应用动量定理研究即可。......
  • 学习笔记:卢卡斯定理
    卢卡斯定理引入卢卡斯定理用于求解大组合数取模的问题,其中模数必须为素数。正常的组合数运算可以通过递推公式求解,但当问题规模很大,而模数是一个不大的质数的时候,就不能简单地通过递推求解来得到答案,需要用到卢卡斯定理。定义卢卡斯定理内容如下:对于质数\(p\),有\[\binom{n}{......
  • 学习笔记:裴蜀定理
    裴蜀定理定义裴蜀定理,又称贝祖定理(Bézout'slemma)。是一个关于最大公约数的定理。其内容是:设\(a,b\)是不全为零的整数,则存在整数\(x,y\),使得\(ax+by=\gcd(a,b)\).证明若任何一个等于\(0\),则\(\gcd(a,b)=a\).这时定理显然成立。若\(a,b\)不等于\(0\).由......
  • 学习笔记:威尔逊定理
    威尔逊定理定义威尔逊定理:对于素数\(p\)有\((p-1)!\equiv-1\pmodp\)。证明我们知道在模奇素数\(p\)意义下,\(1,2,\dots,p-1\)都存在逆元且唯一,那么只需要将一个数与其逆元配对发现其乘积均为(同余意义下)\(1\),但前提是这个数的逆元不等于自身。那么很显然\((p-1)!\bmod......