卢卡斯定理
引入
卢卡斯定理用于求解大组合数取模的问题,其中模数必须为素数。正常的组合数运算可以通过递推公式求解,但当问题规模很大,而模数是一个不大的质数的时候,就不能简单地通过递推求解来得到答案,需要用到卢卡斯定理。
定义
卢卡斯定理内容如下:对于质数 \(p\),有
\[\binom{n}{m}\bmod p = \binom{\left\lfloor n/p \right\rfloor}{\left\lfloor m/p\right\rfloor}\cdot\binom{n\bmod p}{m\bmod p}\bmod p \]观察上述表达式,可知 \(n\bmod p\) 和 \(m\bmod p\) 一定是小于 \(p\) 的数,可以直接求解,\(\displaystyle\binom{\left\lfloor n/p \right\rfloor}{\left\lfloor m/p\right\rfloor}\) 可以继续用卢卡斯定理求解。这也就要求 \(p\) 的范围不能够太大,一般在 \(10^5\) 左右。边界条件:当 \(m=0\) 的时候,返回 \(1\)。
时间复杂度为 \(O(f(p) + g(n)\log n)\),其中 \(f(n)\) 为预处理组合数的复杂度,\(g(n)\) 为单次求组合数的复杂度。
long long c(long long n, long long m, long long p){
if(m == 0) return 1;
else return (c(n % p, m % p, p) * c(n / p, m / p, p)) % p;
}
证明
考虑 \(\displaystyle\binom{p}{n} \bmod p\) 的取值,注意到 \(\displaystyle\binom{p}{n} = \frac{p!}{n!(p-n)!}\),分子的质因子分解中 \(p\) 的次数恰好为 \(1\),因此只有当 \(n = 0\) 或 \(n = p\) 的时候 \(n!(p-n)!\) 的质因子分解中含有 \(p\),因此 \(\displaystyle\binom{p}{n} \bmod p = [n = 0 \vee n = p]\)。进而我们可以得出
\[\begin{align} (a+b)^p &= \sum_{n=0}^p \binom pn a^n b^{p-n}\\ &\equiv \sum_{n=0}^p [n=0\vee n=p] a^n b^{p-n}\\ &\equiv a^p + b^p \pmod p \end{align} \]注意过程中没有用到费马小定理,因此这一推导不仅适用于整数,亦适用于多项式。因此我们可以考虑二项式 \(f^p(x)=(ax^n + bx^m)^p \bmod p\) 的结果
\[\begin{align} (ax^n + bx^m)^p &\equiv a^p x^{pn} + b^p x^{pm} \\ &\equiv ax^{pn} + bx^{pm}\\ &\equiv f(x^p) \end{align} \]考虑二项式 \((1+x)^n \bmod p\),那么 \(\displaystyle\binom n m\) 就是求其在 \(x^m\) 次项的取值。使用上述引理,我们可以得到
\[\begin{align} (1+x)^n &\equiv (1+x)^{p\lfloor n/p \rfloor} (1+x)^{n\bmod p}\\ &\equiv (1+x^p)^{\lfloor n/p \rfloor} (1+x)^{n\bmod p} \end{align} \]注意前者只有在 \(p\) 的倍数位置才有取值,而后者最高次项为 \(n\bmod p \le p-1\),因此这两部分的卷积在任何一个位置只有最多一种方式贡献取值,即在前者部分取 \(p\) 的倍数次项,后者部分取剩余项,即 \(\displaystyle\binom{n}{m}\bmod p = \binom{\left\lfloor n/p \right\rfloor}{\left\lfloor m/p\right\rfloor}\cdot\binom{n\bmod p}{m\bmod p}\bmod p\)。
标签:lfloor,rfloor,定理,笔记,long,卢卡斯,binom,bmod,equiv From: https://www.cnblogs.com/tsqtsqtsq/p/17804443.html