首页 > 其他分享 >韦达定理之推导

韦达定理之推导

时间:2022-10-05 10:33:44浏览次数:51  
标签:frac therefore 推导 定理 Delta sqrt 韦达 4ac 2a

\[ax^2+bx+c = 0 \]

\[\\ \\ \]

\[a(x^2+\frac{b}{a}x+\frac{c}{a}) = 0 \]

\[\\ \\ \]

\[x^2+\frac{b}{a}x = -\frac{c}{a} \]

\[\\ \\ \]

\[x^2+\frac{b}{a}x+(\frac{b}{2a})^2 = -\frac{c}{a}+(\frac{b}{2a})^2 \]

\[\\ \\ \]

\[(x+\frac{b}{2a})^2 = \frac{b^2-4ac}{4a^2} \]

\[\\ \\ \]

\[x_{1} = \frac{\sqrt[]{b^2-4ac}-b}{2a} \]

\[\\ \\ \]

\[x_{2} = \frac{-\sqrt[]{b^2-4ac}-b}{2a} \]

\[\\ \\ \]

\[设b^2-4ac=\Delta \]

\[\\ \\ \]

\[\because x_{1}=\frac{ \sqrt[]{\Delta}-b}{2a} \]

\[\\ \\ \]

\[\because x_{2}=\frac{ -\sqrt[]{\Delta}-b}{2a} \]

\[\\ \\ \]

\[\therefore x_{1}+x_{2}=-\frac{b}{a} \]

\[\\ \\ \]

\[\therefore x_{1} \cdot x_{2}=\frac{c}{a} \]

标签:frac,therefore,推导,定理,Delta,sqrt,韦达,4ac,2a
From: https://www.cnblogs.com/Preparing/p/16755174.html

相关文章