首页 > 其他分享 >曲率公式、参数方程确定的曲线公式和曲率半径的推导

曲率公式、参数方程确定的曲线公式和曲率半径的推导

时间:2022-10-04 11:00:44浏览次数:68  
标签:nolimits right frac 推导 公式 曲率 mathop text left

曲率公式、参数方程确定的曲线公式和曲率半径的推导

前言:重在记录,可能出错。

一、总结

曲率:$$\color{red}{K=\frac{{ \left| {{y '' }} \right| }}{{{ \left( 1+{y \prime }\mathop{{}}\nolimits^{{2}}\right. }\mathop{ {\left) \right.} }\nolimits^{{\frac{{3}}{{2}}}}}}}$$

参数方程确定的曲线的曲率:$$\color{red}{K=\frac{{ \left| {{{ \omega '' }} \left( t \left) { \varphi \prime } \left( t \left) -{ \omega \prime } \left( t \left) {{ \varphi '' }} \left( t \left) \right. \right. \right. \right. \right. \right. \right. \right. } \right| }}{{ \left[ {{{ \varphi \prime } \left( t \left) \mathop{{}}\nolimits^{{2}}\right. \right. }+{{ \omega \prime } \left( t \left) \mathop{{}}\nolimits^{{2}}\right. \right. }} \left] \mathop{{}}\nolimits^{{\frac{{3}}{{2}}}}\right. \right. }}}$$

曲率半径:$$\color{red}{{ \rho =\frac{{1}}{{K}}=}\frac{{ \left( 1+{y \prime }\mathop{{}}\nolimits^{{2}} \left) \mathop{{}}\nolimits^{{\frac{{3}}{{2}}}}\right. \right. }}{{ \left| {{y '' }} \right| }}}$$


二、推导

  曲线就是针对曲线上某个点的切线方向角弧长的转动率。

  曲率越大,表示曲线的弯曲程度越大。

  曲率用K表示。切线方向角用α表示。弧长用s表示。


1.曲率公式的推导

\[{\begin{array}{*{20}{l}}{{K=\mathop{{lim}}\limits_{{ \Delta s \to 0}}{ \left| {\frac{{ \Delta \alpha }}{{ \Delta s}}} \right| }=}{ \left| {\frac{{d \alpha }}{{ds}}} \right| }={ \left| {\frac{{d \alpha }}{{dx}}∙\frac{{1}}{{\frac{{ds}}{{dx}}}}} \right| }}\\{}\\{\text{先}\text{求}\frac{{d \alpha }}{{dx}}\text{:}}\\{\frac{{dy}}{{dx}}={y \prime }=tan \alpha }\\{ \because \text{ }{y '' }=\frac{{d\mathop{{}}\nolimits^{{2}}y}}{{dx\mathop{{}}\nolimits^{{2}}}}=\frac{{d \left( \frac{{dy}}{{dx}} \right) }}{{dx}}=\frac{{d \left( \frac{{dy}}{{dx}} \right) }}{{d \alpha }}∙{\frac{{{d \alpha }}}{{dx}}}=\frac{{d \left( tan \alpha \right) }}{{d \alpha }}∙\frac{{d \alpha }}{{dx}}}\\{\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }=sec\mathop{{}}\nolimits^{{2}} \alpha {∙{\frac{{{d \alpha }}}{{dx}}}}}\\{\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }= \left( 1+tan\mathop{{}}\nolimits^{{2}} \alpha \left) ∙\frac{{d \alpha }}{{dx}}\right. \right. }\\{\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }= \left( 1+{y \prime }\mathop{{}}\nolimits^{{2}} \left) \frac{{d \alpha }}{{dx}}\right. \right. }\\\color{red}{ \therefore \frac{{d \alpha }}{{dx}}=\frac{{{y '' }}}{{1+{y \prime }\mathop{{}}\nolimits^{{2}}}}}\\{}\\{}\\{\text{再}\text{求}\frac{{ds}}{{dx}}:}\\{\text{设}A\text{点}\text{坐}\text{标} \left( x\mathop{{}}\nolimits_{{1}},y\mathop{{}}\nolimits_{{1}} \left) \text{,}B\text{点}\text{坐}\text{标} \left( x\mathop{{}}\nolimits_{{2}},y\mathop{{}}\nolimits_{{2}} \right) \right. \right. }\\{\text{当}AB\text{两}\text{点}\text{无}\text{限}\text{接}\text{近}\text{时},\text{可}\text{得} \Delta x \to 0\text{,} \Delta y \to 0\text{,}dx= \Delta x=x\mathop{{}}\nolimits_{{2}}-x\mathop{{}}\nolimits_{{1}}\text{,}dy= \Delta y=y\mathop{{}}\nolimits_{{2}}-y\mathop{{}}\nolimits_{{1}}}\\{\text{弧}\text{长}\mathop{{AB}}\limits^{︵}\text{值}\text{可}\text{以}\text{用}\text{线}\text{段}AB\text{值}\text{近}\text{似}\text{代}\text{替}}\\{ \because \text{ }ds={ \left| {AB} \right| }=\sqrt{{ \left( x\mathop{{}}\nolimits_{{2}}-x\mathop{{}}\nolimits_{{1}} \left) \mathop{{}}\nolimits^{{2}}+ \left( y\mathop{{}}\nolimits_{{2}}-y\mathop{{}}\nolimits_{{1}} \left) \mathop{{}}\nolimits^{{2}}\right. \right. \right. \right. }}}\\{\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }= \left( x\mathop{{}}\nolimits_{{2}}-x\mathop{{}}\nolimits_{{1}} \left) \sqrt{{1+ \left( \frac{{y\mathop{{}}\nolimits_{{2}}-y\mathop{{}}\nolimits_{{1}}}}{{x\mathop{{}}\nolimits_{{2}}-x\mathop{{}}\nolimits_{{1}}}} \left) \mathop{{}}\nolimits^{{2}}\right. \right. }}\right. \right. }\\{\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }=\sqrt{{1+ \left( \frac{{dy}}{{dx}} \left) \mathop{{}}\nolimits^{{2}}\right. \right. }}∙dx}\\{\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }=\mathop{{ \left( 1+{y \prime }\mathop{{}}\nolimits^{{2}} \right) }}\nolimits^{{\frac{{1}}{{2}}}}dx}\\\color{red}{ \therefore \text{ }\frac{{ds}}{{dx}}={ \left( 1+{y \prime }\mathop{{}}\nolimits^{{2}}\right. }\mathop{ {\left) \right.} }\nolimits^{{\frac{{1}}{{2}}}}} \end{array}} \]

综上:

\[{\begin{array}{*{20}{l}}{{{K=\mathop{{lim}}\limits_{{ \Delta s \to 0}}{ \left| \frac{{ \Delta \alpha }}{{ \Delta s}} \right| }=}{ \left| \frac{{d \alpha }}{{ds}} \right| }={ \left| {\frac{{d \alpha }}{{dx}}∙\frac{{1}}{{\frac{{ds}}{{dx}}}}} \right| }}}\\{\begin{array}{*{20}{l}}{\text{ }\text{ }\text{ }={ \left| {\frac{{{y '' }}}{{1+{y \prime }\mathop{{}}\nolimits^{{2}}}}∙\frac{{1}}{{{ \left( 1+{y \prime }\mathop{{}}\nolimits^{{2}}\right. }\mathop{ {\left) \right.} }\nolimits^{{\frac{{1}}{{2}}}}}}} \right| }}\\\color{red}{{\text{ }\text{ }\text{ }=\frac{{{ \left| {{y '' }} \right| }}}{{{ \left( 1+{y \prime }\mathop{{}}\nolimits^{{2}}\right. }\mathop{ {\left) \right.} }\nolimits^{{\frac{{3}}{{2}}}}}}}}\end{array}}\end{array}} \]


若曲线y是由参数方程\({ \left\{ {\begin{array}{*{20}{l}}{x= \varphi \left( t \right) }\\{y= \omega \left( t \right) }\end{array}}\right. }\)确定的,则

\[{\begin{array}{*{20}{l}}{{{y \prime }=\frac{{dy}}{{dx}}=\frac{{dy}}{{dt}}∙\frac{{1}}{{\frac{{dx}}{{dt}}}}}}\\{\text{ }\text{ }\text{ }\text{ }{=}\frac{{{ \omega \prime } \left( t \right) }}{{{ \varphi \prime } \left( t \right) }}}\\{{{{y '' }}=\frac{{d\mathop{{}}\nolimits^{{2}}y}}{{dx\mathop{{}}\nolimits^{{2}}}}=\frac{{d \left( \frac{{dy}}{{dx}} \right) }}{{dx}}=\frac{{d \left( \frac{{dy}}{{dx}} \right) }}{{dt}}∙\frac{{1}}{{\frac{{dx}}{{dt}}}}}}\\{\begin{array}{*{20}{l}}{\text{ }\text{ }\text{ }\text{ }\text{ }=\frac{{{{ \omega '' }} \left( t \left) { \varphi \prime } \left( t \left) -{ \omega \prime } \left( t \left) {{ \varphi '' }} \left( t \right) \right. \right. \right. \right. \right. \right. }}{{{ \varphi \prime } \left( t \left) \mathop{{}}\nolimits^{{2}}\right. \right. }}∙\frac{{1}}{{{ \varphi \prime } \left( t \right) }}}\\{\text{ }\text{ }\text{ }\text{ }\text{ }=\frac{{{{ \omega '' }} \left( t \left) { \varphi \prime } \left( t \left) -{ \omega \prime } \left( t \left) {{ \varphi '' }} \left( t \right) \right. \right. \right. \right. \right. \right. }}{{{ \varphi \prime } \left( t \left) \mathop{{}}\nolimits^{{3}}\right. \right. }}}\\{\text{曲}\text{率}K={\frac{{{ \left| {{y '' }} \right| }}}{{ \left( 1+\mathop{{{y \prime }}}\nolimits^{{2}} \left) \mathop{{}}\nolimits^{{\frac{{3}}{{2}}}}\right. \right. }}}}\\{\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }=\frac{{{ \left| {\frac{{{{ \omega '' }} \left( t \left) { \varphi \prime } \left( t \left) -{ \omega \prime } \left( t \left) {{ \varphi '' }} \left( t \right) \right. \right. \right. \right. \right. \right. }}{{{ \varphi \prime } \left( t \left) \mathop{{}}\nolimits^{{3}}\right. \right. }}\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }} \right| }}}{{ \left[ 1+\frac{{{ \omega \prime } \left( t \left) \mathop{{}}\nolimits^{{2}}\right. \right. }}{{{ \varphi \prime } \left( t \left) \mathop{{}}\nolimits^{{2}}\right. \right. }}\text{ }\text{ }\text{ } \left] \mathop{{}}\nolimits^{{\frac{{3}}{{2}}}}\right. \right. }}}\\{\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }=\frac{{{ \left| {\frac{{{{ \omega '' }} \left( t \left) { \varphi \prime } \left( t \left) -{ \omega \prime } \left( t \left) {{ \varphi '' }} \left( t \right) \right. \right. \right. \right. \right. \right. }}{{{ \varphi \prime } \left( t \left) \mathop{{}}\nolimits^{{3}}\right. \right. }}\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }} \right| }}}{{ \left[ \frac{{{{ \varphi \prime } \left( t \left) \mathop{{}}\nolimits^{{2}}\right. \right. }+{{ \omega \prime } \left( t \left) \mathop{{}}\nolimits^{{2}}\right. \right. }}}{{{ \varphi \prime } \left( t \left) \mathop{{}}\nolimits^{{2}}\right. \right. }}\text{ }\text{ }\text{ }\text{ }\text{ }\text{ } \left] \mathop{{}}\nolimits^{{\frac{{3}}{{2}}}}\right. \right. }}}\\{\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }=\frac{{{ \left| {\frac{{{ \omega ''} \left( t \left) { \varphi \prime } \left( t \left) -{ \omega \prime } \left( t \left) { \varphi ''} \left( t \left) \text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\right. \right. \right. \right. \right. \right. \right. \right. }}{{{ \varphi \prime } \left( t \left) \mathop{{}}\nolimits^{{3}}\right. \right. }}∙{{ \varphi \prime } \left( t \left) \mathop{{}}\nolimits^{{3}}\right. \right. }\text{ }\text{ }} \right| }}}{{ \left[ {{{ \varphi \prime } \left( t \left) \mathop{{}}\nolimits^{{2}}\right. \right. }+{{ \omega \prime } \left( t \left) \mathop{{}}\nolimits^{{2}}\right. \right. }\text{ }\text{ }} \left] \mathop{{}}\nolimits^{{\frac{{3}}{{2}}}}\right. \right. }}}\\\color{red}{\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }=\frac{{ \left| {{{{ \omega '' }} \left( t \left) { \varphi \prime } \left( t \left) -{ \omega \prime } \left( t \left) {{ \varphi '' }} \left( t \left) \text{ }\right. \right. \right. \right. \right. \right. \right. \right. }} \right| }}{{ \left[ {{{ \varphi \prime } \left( t \left) \mathop{{}}\nolimits^{{2}}\right. \right. }+{{ \omega \prime } \left( t \left) \mathop{{}}\nolimits^{{2}}\right. \right. }\text{ }} \left] \mathop{{}}\nolimits^{{\frac{{3}}{{2}}}}\right. \right. }}}\end{array}}\end{array}} \]


2.曲率半径的推导

  曲率半径用$\color{red}\rho $或者R表示。

\[{{ \rho =\frac{{1}}{{K}}=}\frac{{ \left( 1+{y \prime }\mathop{{}}\nolimits^{{2}} \left) \mathop{{}}\nolimits^{{\frac{{3}}{{2}}}}\right. \right. }}{{ \left| {{y '' }} \right| }}} \]

标签:nolimits,right,frac,推导,公式,曲率,mathop,text,left
From: https://www.cnblogs.com/wsgxg/p/16751156.html

相关文章

  • 《聪明人用公式计算三棱锥体积吗?》 回复
    《聪明人用公式计算三棱锥体积吗?》    https://tieba.baidu.com/p/8056552446   。  计算 三棱锥体积涉及 已知三角形三个顶点求三角形面积, ......
  • auto型别推导
    auto型别推导auto型别推导就是模板型别推导。在模板型别推导和 auto型别推导之间可以建立起一一映射,它们之间也确实存在双向的算法变换。以rx为例:intx=27;const......
  • 4个Python推导式相关的开发技巧
    对于数据科学,Python通常被广泛地用于进行数据的处理和转换,它提供了强大的数据结构处理的函数,使数据处理更加灵活,这里说的“灵活性”是什么意思?这意味着在Python中总是有......
  • 模板型别推导
    模板型别推导下面代码表示:函数模板和函数调用(从expr来推导T和ParamType的型别)。template<typenameT>voidfunc(ParamTypeparam);//函数模板的声明func(ex......
  • 误差理论与测量平差基础——例题补充推导
    本次补充推导的是第三章的第六道例题,主要做出的补充推导内容是几个方差计算公式的内容,下面是补充内容  ......
  • 公共操作与推导式
    一、公共操作(一)运算符运算符描述支持的容器类型+合并字符串,列表,元组*复制字符串,列表,元组in是否存在字符串,列表,元组,字典notin是否不存在字符串......
  • FastFel解析一个公式的步骤
    FastFel查看源码后,理解的运算步骤:1)创建一个FelEngine,FelEnginefel=newFelEngineIml();2)将表达式exp解析成为一个节点树FelNodetree,fel.parse(exp);3)打印......
  • 三角函数与反三角函数的定义、图像、导数(推导)完整版
    三角函数与反三角函数的定义、图像、导数(推导)完整版一、三角函数二、反三角函数......
  • 分享地球上的常用计算公式
    网址为:http://www.movable-type.co.uk/scripts/latlong.html根据经纬度做的一些常用计算,并有JavaScript的示例代码。英文的介绍网址,请耐心观看。haversine公式,根据两个点的......
  • 基2时间抽取FFT算法推导,及C语言实现
    https://blog.csdn.net/qq_38677310/article/details/99663883 https://wenku.baidu.com/view/af198ef01a5f312b3169a45177232f60ddcce77d.html......