首页 > 其他分享 >莫比乌斯反演学习笔记

莫比乌斯反演学习笔记

时间:2023-07-16 16:34:02浏览次数:42  
标签:lfloor right frac cdot 乌斯 sum 反演 莫比 left

莫比乌斯反演

数论函数

数论函数是指定义域为正整数的一类函数。

基本的数论函数

  • 恒等函数\(I(n)=1\)
  • 元函数\(e(n)=[n=1]\)
  • 单位函数\(id(n)=n\)
  • 莫比乌斯函数$$\mu(n)=\begin{cases} 0, & n的约数中包含大于1的完全平方数 \ (-1)^k, & k为x含有的质因子种类数 \end{cases}$$
  • 欧拉函数\(\varphi(n)=小于等于n且与n互质的正整数个数\)

积性函数

称一个数论函数\(f\)为积性函数,当且仅当\(\forall a,b\subseteq\mathbb{N}^*\operatorname{gcd}\left( a,b \right) =1\)满足$f\left( a \right) \cdot f\left( b \right) =f\left( a\cdot b \right) $。

若一个数论函数满足\(\forall a,b\subseteq\mathbb{N}^*\)有\(f\left( a \right) \cdot f\left( b \right) =f\left( a\cdot b \right)\)则称数论函数\(f\)为完全积性函数。

狄利克雷卷积

狄利克雷卷积是定义在两个数论函数上的二元运算,$$\left( f*g \right) \left( n \right) = \sum_{d|n}f(d)\cdot g\left( \frac{n}{d} \right) $$
这样得到的新数论函数就称为\(f\)和\(g\)的狄利克雷卷积。

下面是狄利克雷卷积的一些性质:

  • 狄利克雷卷积具有交换律和结合律。

  • 两个积性函数的狄利克雷卷积还是积性函数

    • proof:

      \[\begin{aligned} &\forall a,b\subseteq \mathbb{N}^*,\operatorname{gcd}\left( a,b \right) =1 \\ &{\kern 15pt}\sum_{d|a}f\left( d \right) \cdot g\left( \frac{a}{d} \right) \times \sum_{d|b} f\left( d \right) \cdot g\left( \frac{b}{d} \right)\\ &=\sum_{d_1|a,d_2|b} f\left( d_1 \right) \cdot g\left( \frac{a}{d_1} \right) \times f\left( d_2 \right) \cdot g\left( \frac{b}{d_2} \right) \\ &=\sum_{d_1|a,d_2|b} f\left( d_1\cdot d_2 \right) \cdot g\left( \frac{a}{d_1} \cdot \frac{b}{d_2}\right)\\ &=\sum_{d|ab}f\left( d \right) \cdot g\left( \frac{ab}{d} \right) \\ \end{aligned} \]

  • 若两个数论函数\(f,g\)满足\(f*g=e\)则称\(f,g\)互为对方的逆。

  • 任何一个满足\(f(1)\neq 0\)的数论函数都存在逆

    • 我们已知一个函数\(f(n)\),设\(g(n)=\frac{e(n)-\sum\limits_{d|n,d≠1}f(d)\cdot g\left( \frac{n}{d} \right) }{f(1)}\)
      \((f*g)(n)=\sum\limits_{d|n}f(d)\cdot g\left( \frac{n}{d} \right)\)
      \(=\sum\limits_{d|n,d≠1}f(d)\cdot g\left( \frac{n}{d} \right)+f(1)\cdot g(n)\)
      \(=\sum\limits_{d|n,d≠1}f(d)\cdot g\left( \frac{n}{d} \right)+f(1)\cdot \frac{\left(e-\sum\limits_{d|n,d≠1}f(d)\cdot g\left( \frac{n}{d} \right)\right)}{f(1)}\)
      \(=\sum\limits_{d|n,d≠1}f(d)\cdot g\left( \frac{n}{d} \right)+e(n)-\sum\limits_{d|n,d≠1}f(d)\cdot g\left( \frac{n}{d} \right)\)
      \(=e(n)\)
  • 积性函数的逆还是积性函数

    • proof:

      \[\begin{aligned} &g(1)\cdot f(1)=e(1)=1 \\ &假设\forall n,m\subseteq\mathbb{N}^*,\operatorname{gcd}(n,m)=1,n\cdot m\leq k有g(n\cdot m)=g(n)\cdot g(m) \\ &则当n\cdot m=k+1时\\ &g(n)\cdot g(m)=\left( -\sum\limits_{d|n,d\neq 1}f(d)\cdot g\left( \frac{n}{d} \right) \right)\cdot \left( -\sum\limits_{d|m,d\neq 1}f(d)\cdot g\left( \frac{m}{d} \right) \right) \\ &{\kern 48pt}=\sum\limits_{d_1|n,d_2|m,d_1\neq 1,d_2\neq 1}f(d_1)\cdot g\left( \frac{n}{d_1} \right)\cdot f(d_2)\cdot g\left( \frac{m}{d_2} \right)\\ &{\kern 48pt}=\sum\limits_{d|n\cdot m,d\neq 1}f(d)\cdot g\left( \frac{n\cdot m}{d} \right) - f(n)\cdot \sum\limits_{d|n,d\neq 1}f(d)\cdot g\left( \frac{n}{d} \right)-f(m)\cdot \sum\limits_{d|m,d\neq 1}f(d)\cdot g\left( \frac{m}{d} \right) \\ &{\kern 48pt}=-g(n\cdot m)+2\cdot g(n)\cdot g(m) \\ &因此g(n\cdot m)=g(n)\cdot g(m),由归纳法可知g(n)为积性函数 \end{aligned} \]

莫比乌斯函数

对于数论函数\(F,f\)其中\(F\)易求,\(f\)难求。如果满足\(F(n)=\sum\limits_{d|n}f(d)\)我们可以利用\(F\)反推出\(f\)。

注意到,\(F=f*I\Rightarrow F*I^{-1}=f\)我们只需要研究\(I^{-1}\)的性质。事实上这个函数就是莫比乌斯函数\(\mu(n)\)。

由积性函数的逆还是积性函数可知,\(\mu(n)\)也是积性函数。其中\(\mu(1)\cdot I(1)=e(1)=1\Rightarrow \mu(1)=1\)

研究积性函数一般先从质数的情况入手。\(\forall p\subseteq prime,\mu(p)\cdot I(1)+\mu(1)\cdot I(p)=e(p)=0\Rightarrow \mu(p)=-1\)

再来研究质数的幂次的情况。\(\sum\limits_{d|p^k}\mu(d)\cdot I\left( \frac{p^k}{d} \right) = e(p^k)=0\Rightarrow \mu(1)+\mu(p)+\mu(p^2)+ \cdots +\mu(p^k)=0\)可以归纳推出\(\mu(p^k)=0(k\ge 2)\)

这样我们就得到了莫比乌斯函数的完整定义$$\mu(n)=\begin{cases} 0, & n的约数中包含大于1的完全平方数 \ (-1)^k, & k为x含有的质因子种类数 \end{cases}$$

莫比乌斯反演的几种形式

  • 定义形式:\(\sum\limits_{d|n}\mu(d)=[n=1]\)
    变体:\([n=m]=[m|n]\cdot [\frac{n}{m}=1]=[m|n]\cdot \sum\limits_{d|\frac{n}{m}}\mu(d)\)

  • 约数形式:如果\(F(n)=\sum\limits_{d|n}f(d)\)我们可以得到$f(n)=\sum\limits_{d|n}\mu(d)\cdot F\left( \frac{n}{d} \right) $

  • 倍数形式:
    如果\(F(n)=\sum\limits_{k=1}^{+\infty}f(k\cdot n)\)那么\(f(n)=\sum\limits_{k=1}^{+\infty}\mu(k)\cdot F(k\cdot n)\)

    • proof:

      \[\begin{aligned} &{\kern 12pt}\sum\limits_{k=1}^{+\infty}\mu(k)\cdot F(k\cdot n) \\ &=\sum\limits_{k=1}^{+\infty}\mu(k)\sum\limits_{i=1}^{+\infty}f(i\cdot k\cdot n) \\ &=\sum\limits_{i=1}^{+\infty}f(i\cdot n)\sum\limits_{k|i}\mu(k)\\ &=\sum\limits_{i=1}^{+\infty}f(i\cdot n)\cdot [i=1]\\ &=f(n) \end{aligned} \]

一些例子

  • \(求\sum\limits_{i=1}^n\sum\limits_{j=1}^m[\operatorname{gcd}(i,j)=1]\)

    \[\begin{aligned} &{\kern 12pt}\sum\limits_{i=1}^n\sum\limits_{j=1}^m[\operatorname{gcd}(i,j)=1]\\ &=\sum\limits_{i=1}^n\sum\limits_{j=1}^m\sum\limits_{d|\operatorname{gcd}(i,j)}\mu(d)\\ &=\sum\limits_{i=1}^n\sum\limits_{j=1}^m\sum\limits_{d|i,d|j}\mu(d)\\ &=\sum\limits_{d=1}^{\min\left\{ n,m \right\} }\sum\limits_{d|i}\sum\limits_{d|j}1\\ &=\sum\limits_{d=1}^{\min\left\{ n,m \right\} }\mu(d)\cdot \left\lfloor \frac{n}{d} \right\rfloor\cdot \left\lfloor \frac{m}{d} \right\rfloor\\ &接下来就可以直接数论分块了。 \end{aligned} \]

  • 求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^m[\operatorname{gcd}(i,j)=prime]\quad n,m\leq 10^7,T组数据T\leq 10^4\)

    \[\begin{aligned} &{\kern 18pt}\sum\limits_{i=1}^n\sum\limits_{j=1}^m[\operatorname{gcd}(i,j)=prime] \\ &=\sum\limits_{p\subseteq prime}\sum\limits_{i=1}^n\sum\limits_{j=1}^m[\operatorname{gcd}(i,j)=p]\\ &=\sum\limits_{p\subseteq prime}\sum\limits_{i=1}^n\sum\limits_{j=1}^m[p|\operatorname{gcd}(i,j)]\cdot [\frac{\operatorname{gcd}(i,j)}{p}=1]\\ &=\sum\limits_{p\subseteq prime}\sum\limits_{i=1}^{\left\lfloor \frac{n}{p}\right\rfloor}\sum\limits_{j=1}^{\left\lfloor \frac{m}{p}\right\rfloor}[\frac{\operatorname{gcd}(i\cdot p,j\cdot p)}{p}=1]\\ &=\sum\limits_{p\subseteq prime}\sum\limits_{i=1}^{\left\lfloor \frac{n}{p}\right\rfloor}\sum\limits_{j=1}^{\left\lfloor \frac{m}{p}\right\rfloor}[\operatorname{gcd}(i,j)=1]\\ &=\sum\limits_{p\subseteq prime}\sum\limits_{d=1}^{\min\{\left\lfloor \frac{n}{p} \right\rfloor,\left\lfloor \frac{m}{p} \right\rfloor\}}\mu(d)\cdot \left\lfloor \frac{\left\lfloor \frac{n}{p} \right\rfloor}{d} \right\rfloor\cdot \left\lfloor \frac{\left\lfloor \frac{m}{p} \right\rfloor}{d} \right\rfloor\\ &小trick:\left\lfloor \frac{\left\lfloor \frac{m}{p} \right\rfloor}{d} \right\rfloor=\left\lfloor \frac{m}{p\cdot d} \right\rfloor\\ &{\kern 10pt}proof:设m=k_1\cdot p+r_1(r_1<p),k_1=k_2\cdot d+r_2(r_2<d)\\ &{\kern 46pt}则m=k_2\cdot d\cdot p+p\cdot r_2+r_1\\ &{\kern 46pt}而p\cdot r_2+r_1\leq p\cdot (d-1)+(p-1)=p\cdot d-1\\ &{\kern 46pt}故\left\lfloor \frac{m}{p\cdot d} \right\rfloor=k_2=\left\lfloor \frac{\left\lfloor \frac{m}{p} \right\rfloor}{d} \right\rfloor\\ &枚举p\cdot d:\\ &=\sum\limits_{k=1}^{\min\left\{ n,m \right\} }\left\lfloor \frac{n}{k} \right\rfloor\cdot \left\lfloor \frac{m}{k} \right\rfloor\cdot \sum\limits_{p\subseteq prime,p|k}\mu(\frac{k}{p})\\ &然后前面数论分块,后面可以预处理前缀和。 \end{aligned} \]

  • \(求f(n)=\sum\limits_{d=1}^nd^m\cdot [\operatorname{gcd}(n,d)=1],其中n=\prod\limits_{i=1}^{\omega}p_i^{\alpha_i},\omega\leq 10^3,p_i\subseteq prime,p_i\leq 10^9,\alpha_i\leq 10^9,对10^9+7取模\)

    \[\begin{aligned} &令g(n)=\sum\limits_{i=1}^ni^m,那么g(n)=\sum\limits_{d|n}f(\frac{n}{d})\cdot d^m\\ &\frac{g(n)}{n^m}=\sum\limits_{d|n}f(\frac{n}{d})\cdot \frac{d^m}{n^m}\\ &根据反演公式:\\ &f(n)\cdot \frac{1}{n^m}=\sum\limits_{d|n}\mu(d)\cdot \frac{g(\frac{n}{d})}{\left( \frac{n}{d} \right) ^m}\\ &f(n)=\sum\limits_{d|n}\mu(d)\cdot d^m\cdot g(\frac{n}{d})\\ &函数g(n)可以表示成关于n的m+1次多项式,设g(n)=\sum\limits_{i=0}^{m+1}f_i\cdot n^i\\ &f(n)=\sum\limits_{d|n}\mu(d)\cdot d^m\cdot\sum\limits_{i=0}^{m+1}f_i\cdot \left( \frac{n}{d} \right) ^i\\ &{\kern 20pt}=\sum\limits_{i=0}^{m+1}f_i\cdot n^i\cdot \sum\limits_{d|n}\mu(d)\cdot d^{m-i}\\ &{\kern 20pt}=\sum\limits_{i=0}^{m+1}f_i\cdot n^i\cdot\prod\limits_{j=1}^{\omega}\sum\limits_{k=0}^{\alpha_j}\mu(p_j^k)\cdot p_j^{(m-i)\cdot k}\\ &{\kern 20pt}=\sum\limits_{i=0}^{m+1}f_i\cdot n^i\cdot\prod\limits_{j=1}^{\omega}\left( 1-p_j^{m-i}\right)\\ &m的范围比较小因此可以直接用拉格朗日插值求出f_i \end{aligned} \]

  • \(求\prod_{i=1}^{A}\prod_{j=1}^{B} \prod_{k=1}^{C} \left( \frac{\operatorname{lcm}(i,j)}{\operatorname{gcd}(i,k)} \right) ^{\operatorname{gcd}(i,j,k)} \quad A,B,C\leq 10^5,T组数据,T\leq 70\)

    \[\begin{aligned} &{\kern 12pt}\prod_{i=1}^{A}\prod_{j=1}^{B} \prod_{k=1}^{C} \left( \frac{\operatorname{lcm}(i,j)}{\operatorname{gcd}(i,k)} \right) ^{\operatorname{gcd}(i,j,k)}\\ &=\prod_{i=1}^{A}\prod_{j=1}^{B} \prod_{k=1}^{C} \left( \frac{i\cdot j}{\operatorname{gcd}(i,k)\cdot \operatorname{gcd}(i,j)} \right) ^{\operatorname{gcd}(i,j,k)}\\ &可以拆成两个问题\prod_{i=1}^{A}\prod_{j=1}^{B} \prod_{k=1}^{C}i^{\operatorname{gcd}(i,j,k)}以及\prod_{i=1}^{A}\prod_{j=1}^{B} \prod_{k=1}^{C}\operatorname{gcd}(i,j)^{\operatorname{gcd}(i,j,k)}\\ &\prod_{i=1}^{A}\prod_{j=1}^{B} \prod_{k=1}^{C}i^{\operatorname{gcd}(i,j,k)}=\prod_{i=1}^{A} i^{\sum\limits_{j=1}^B\sum\limits_{k=1}^C \operatorname{gcd}(i,j,k)}\\ &{\kern 79pt}=\prod_{i=1}^{A} i^{\sum\limits_{d=1}^{\min\left\{ i,B,C \right\} }d\sum\limits_{j=1}^{\left\lfloor \frac{B}{d} \right\rfloor}\sum\limits_{k=1}^{\left\lfloor \frac{C}{d} \right\rfloor}[\operatorname{gcd}\left( \frac{i}{d},j,k \right) =1]}\\ &{\kern 79pt}=\prod_{i=1}^{A} i^{\sum\limits_{d=1}^{\min\left\{ i,B,C \right\} }d\sum\limits_{j=1}^{\left\lfloor \frac{B}{d} \right\rfloor}\sum\limits_{k=1}^{\left\lfloor \frac{C}{d} \right\rfloor}\sum\limits_{t|\frac{i}{d},t|j,t|k}\mu(t)}\\ &{\kern 79pt}=\prod_{i=1}^{A} i^{\sum\limits_{s|i}\sum\limits_{t|s}\mu(t)\cdot \left\lfloor \frac{B}{s} \right\rfloor\cdot \left\lfloor \frac{C}{s} \right\rfloor\cdot \frac{s}{t}}\\ &这边有个小trick,\mu\ast id=\varphi\\ &\quad proof:\forall d|n,满足1\leq a\leq n且\operatorname{gcd}(a,n)=d \Leftrightarrow \operatorname{gcd}\left( \frac{a}{d},\frac{n}{d} \right) 的a一共有\varphi\left( \frac{n}{d} \right)个\\ &\qquad\qquad 故\sum\limits_{d|n}\varphi\left( \frac{n}{d} \right) =\sum\limits_{d|n}\varphi(d)=n\\ &{\kern 59pt}原式=\prod_{i=1}^{A} i^{\sum\limits_{s|i}\varphi(s)\cdot \left\lfloor \frac{B}{s} \right\rfloor\cdot \left\lfloor \frac{C}{s} \right\rfloor}\\ &{\kern 79pt}=\prod_{s=1}^{A}\prod_{i=1}^{\left\lfloor \frac{A}{s} \right\rfloor}\left( i\cdot s \right) ^{\varphi(s)\cdot \left\lfloor \frac{B}{s} \right\rfloor\cdot \left\lfloor \frac{C}{s} \right\rfloor}\\ &{\kern 79pt}=\prod_{s=1}^{A}\left[ \left( \left\lfloor \frac{A}{s} \right\rfloor \right) !\cdot s^{\left\lfloor \frac{A}{s} \right\rfloor} \right] ^{\varphi(s)\cdot \left\lfloor \frac{B}{s} \right\rfloor\cdot \left\lfloor \frac{C}{s} \right\rfloor}\\ &接下来预处理+数论分块就可以了\\ &\prod_{i=1}^{A}\prod_{j=1}^{B} \prod_{k=1}^{C}\operatorname{gcd}(i,j)^{\operatorname{gcd}(i,j,k)}=\prod_{d=1}^{\min\left\{ A,B,C \right\}}\prod_{i=1}^{\left\lfloor \frac{A}{d} \right\rfloor}\prod_{j=1}^{\left\lfloor \frac{B}{d} \right\rfloor} \prod_{k=1}^{\left\lfloor \frac{C}{d} \right\rfloor} [d\cdot \operatorname{gcd}(i,j)]^{d\cdot [\operatorname{gcd}(i,j,k)=1]}\\ &{\kern 110pt}= \prod_{d=1}^{\min\left\{ A,B,C \right\}}\prod_{i=1}^{\left\lfloor \frac{A}{d} \right\rfloor}\prod_{j=1}^{\left\lfloor \frac{B}{d} \right\rfloor}[d\cdot \operatorname{gcd}(i,j)]^{d\cdot \sum\limits_{k=1}^{\left\lfloor \frac{C}{d} \right\rfloor}\sum\limits_{t|i,t|j,t|k}\mu(t)}\\ &{\kern 110pt}=\prod_{d=1}^{\min\left\{ A,B,C \right\}}\prod_{t=1}^{\min\left\{ \left\lfloor \frac{A}{d} \right\rfloor,\left\lfloor \frac{B}{d} \right\rfloor,\left\lfloor \frac{C}{d} \right\rfloor \right\} } \prod_{i=1}^{\left\lfloor \frac{A}{t\cdot d} \right\rfloor} \prod_{j=1}^{\left\lfloor \frac{B}{t\cdot d} \right\rfloor} [d\cdot t\cdot \operatorname{gcd}(i,j)]^{d\cdot \mu(t)\cdot \left\lfloor \frac{C}{t\cdot d} \right\rfloor}\\ &这个式子同样可以拆成两部分来计算,\prod_{d=1}^{\min\left\{ A,B,C \right\}}\prod_{t=1}^{\min\left\{ \left\lfloor \frac{A}{d} \right\rfloor,\left\lfloor \frac{B}{d} \right\rfloor,\left\lfloor \frac{C}{d} \right\rfloor \right\} } \prod_{i=1}^{\left\lfloor \frac{A}{t\cdot d} \right\rfloor} \prod_{j=1}^{\left\lfloor \frac{B}{t\cdot d} \right\rfloor} [d\cdot t]^{d\cdot \mu(t)\cdot \left\lfloor \frac{C}{t\cdot d} \right\rfloor}\\ &以及\prod_{d=1}^{\min\left\{ A,B,C \right\}}\prod_{t=1}^{\min\left\{ \left\lfloor \frac{A}{d} \right\rfloor,\left\lfloor \frac{B}{d} \right\rfloor,\left\lfloor \frac{C}{d} \right\rfloor \right\} } \prod_{i=1}^{\left\lfloor \frac{A}{t\cdot d} \right\rfloor} \prod_{j=1}^{\left\lfloor \frac{B}{t\cdot d} \right\rfloor} \operatorname{gcd}(i,j)^{d\cdot \mu(t)\cdot \left\lfloor \frac{C}{t\cdot d} \right\rfloor}\\ &{\kern 12pt}\prod_{d=1}^{\min\left\{ A,B,C \right\}}\prod_{t=1}^{\min\left\{ \left\lfloor \frac{A}{d} \right\rfloor,\left\lfloor \frac{B}{d} \right\rfloor,\left\lfloor \frac{C}{d} \right\rfloor \right\} } \prod_{i=1}^{\left\lfloor \frac{A}{t\cdot d} \right\rfloor} \prod_{j=1}^{\left\lfloor \frac{B}{t\cdot d} \right\rfloor} [d\cdot t]^{d\cdot \mu(t)\cdot \left\lfloor \frac{C}{t\cdot d} \right\rfloor}\\ &=\prod_{d=1}^{\min\left\{ A,B,C \right\}}\prod_{t=1}^{\min\left\{ \left\lfloor \frac{A}{d} \right\rfloor,\left\lfloor \frac{B}{d} \right\rfloor,\left\lfloor \frac{C}{d} \right\rfloor \right\} }[d\cdot t]^{d\cdot \mu(t)\cdot \left\lfloor \frac{A}{d\cdot t} \right\rfloor\cdot \left\lfloor \frac{B}{d\cdot t} \right\rfloor\cdot \left\lfloor \frac{C}{d\cdot t} \right\rfloor}\\ &=\prod_{s=1}^{\min\left\{ A,B,C \right\} } s^{\left\lfloor \frac{A}{s} \right\rfloor\cdot \left\lfloor \frac{B}{s} \right\rfloor\cdot \left\lfloor \frac{C}{s} \right\rfloor\cdot \sum\limits_{t|s}\mu(t)\cdot \frac{s}{t}}\\ &=\prod_{s=1}^{\min\left\{ A,B,C \right\} } s^{\left\lfloor \frac{A}{s} \right\rfloor\cdot \left\lfloor \frac{B}{s} \right\rfloor\cdot \left\lfloor \frac{C}{s} \right\rfloor\cdot \varphi(s)}\\ &第一个式子这样已经可以数论分块做了。\\ &{\kern 12pt}\prod_{d=1}^{\min\left\{ A,B,C \right\}}\prod_{t=1}^{\min\left\{ \left\lfloor \frac{A}{d} \right\rfloor,\left\lfloor \frac{B}{d} \right\rfloor,\left\lfloor \frac{C}{d} \right\rfloor \right\} } \prod_{i=1}^{\left\lfloor \frac{A}{t\cdot d} \right\rfloor} \prod_{j=1}^{\left\lfloor \frac{B}{t\cdot d} \right\rfloor} \operatorname{gcd}(i,j)^{d\cdot \mu(t)\cdot \left\lfloor \frac{C}{t\cdot d} \right\rfloor}\\ &=\prod_{s=1}^{\min\left\{ A,B,C \right\}}\prod_{i=1}^{\left\lfloor \frac{A}{s} \right\rfloor} \prod_{j=1}^{\left\lfloor\frac{B}{s}\right\rfloor} \operatorname{gcd}(i,j)^{\left\lfloor \frac{C}{s} \right\rfloor\cdot \varphi(s)}\\ &=\prod_{s=1}^{\min\left\{ A,B,C \right\}}\left[ \prod\limits_{d=1}^{\min\left\{ \left\lfloor \frac{A}{s} \right\rfloor,\left\lfloor \frac{B}{s} \right\rfloor \right\}}d^{\sum\limits_{i=1}^{\left\lfloor \frac{A}{s\cdot d} \right\rfloor}\sum\limits_{j=1}^{\left\lfloor \frac{B}{s\cdot d} \right\rfloor}[\operatorname{gcd}(i,j)=1]} \right]^{\varphi(s)\cdot \left\lfloor \frac{C}{s} \right\rfloor}\\ &=\prod_{s=1}^{\min\left\{ A,B,C \right\}}\left[ \prod\limits_{d=1}^{\min\left\{ \left\lfloor \frac{A}{s} \right\rfloor,\left\lfloor \frac{B}{s} \right\rfloor \right\}}d^{\sum\limits_{t=1}^{\min\left\{ \left\lfloor \frac{A}{s\cdot d} \right\rfloor,\left\lfloor \frac{B}{s\cdot d} \right\rfloor \right\} } \mu(t)\cdot \left\lfloor \frac{A}{s\cdot d\cdot t} \right\rfloor\cdot \left\lfloor \frac{B}{s\cdot d\cdot t} \right\rfloor} \right]^{\varphi(s)\cdot \left\lfloor \frac{C}{s} \right\rfloor}\\ &=\prod_{s=1}^{\min\left\{ A,B,C \right\}}\left[ \prod_{m=1}^{\min{\left\lfloor \frac{A}{s} \right\rfloor,\left\lfloor\frac{B}{s} \right\rfloor}}\left( \prod_{d|m}d^{\mu(\frac{m}{d})} \right)^{\left\lfloor \frac{A}{s\cdot m} \right\rfloor\cdot \left\lfloor \frac{B}{s\cdot m} \right\rfloor} \right]^{\varphi(s)\cdot \left\lfloor \frac{C}{s} \right\rfloor}\\ &然后我们预处理出中间的\prod_{d|m}d^{\mu(\frac{m}{d})}然后就可以数论分块套数论分块求解上面的式子了。 \end{aligned} \]

标签:lfloor,right,frac,cdot,乌斯,sum,反演,莫比,left
From: https://www.cnblogs.com/clapp/p/17558044.html

相关文章

  • 莫比乌斯反演
    函数定义\[\begin{aligned}\\I(n)&=1\\\epsilon(n)&=[n=1]\\id(n)&=n\end{aligned}\]卷积定义\[(f*g)(x)=\sum\limits_{d|n}f(d)g(\dfrac{n}{d})\]有以下性质:\[\begin{aligned}f*g&=g*f\\(f*g)*h&=f*(g*h)\......
  • 拉格朗日反演
    前置引理首先设\(\Bbb{C}[[x]]=\{\sum\limits_{i\ge0}a_ix^i|a_i\in\Bbb{C}\},\Bbb{C}((x))=\{\sum\limits_{i\ge-N}a_ix^i|N\inZ,a_i\in\Bbb{C}\}\)有以下引理:\(f(x)\in\Bbb{C}((x)),[x^{-1}]f'(x)=0\)显然,因为没有一个幂次项求导后是\(-1\)次项。\(f(......
  • 二项式反演
    第一种形式:\[f(n)=\sum\limits_{i=0}^n\dbinom{n}i{g(i)}\Leftrightarrowg(n)=\sum\limits_{i=0}^n(-1)^{n+i}\dbinomnif(i)\]证明:\[\begin{aligned}f(n)&=\sum\limits_{i=0}^n\dbinom{n}i{g(i)}=\sum\limits_{i=0}^n\dbinomni\sum\limits_{j=0......
  • 单位根反演
    命题如下:$$\forallk\inZ,[n|k]=\frac{1}{n}\sum\limits_{i=0}{n-1}\omega_n$$证明:设$[n|k]=1$,则根据单位根性质,我们可以得到:$$\sum\limits_{i=0}{n-1}\omega_n=n$$设$[n|k]=0$,则:$$\sum\limits_{i=0}{n-1}\omega_n=\frac{\omega_n{nk}-1}{\omega_n-1}=0$$由此可知......
  • 莫比乌斯函数与反演
     莫比乌斯函数的原式是u(n)={1,n=1(-1)^r,n=p1*p2*p3*......*pr 其中p为不同的质数                       0,其他}它有两种解法,分别是欧拉筛和杜教筛下面给出欧拉筛的代码:#include<bits/stdc......
  • 莫比乌斯反演学习笔记
    狄利克雷卷积对于两个数论函数$f(x)$和$g(x)$,他们的卷积结果$h(x)$定义为$h(x)=\sum_{d|x}^{}f(d)g(\frac{x}{d})=\sum_{ab=x}^{}f(a)g(b) $即$h=f*g$满足交换律,结合律,分配律。莫比乌斯函数 $$\mu(n)=\left\{\begin{matrix}1 &n=1\\0 &n含有平方因子\\(-1......
  • 莫比乌斯函数入门
    莫比乌斯函数入门之前遇到过很多次莫反的题,但是每次做完就忘了,云里雾里,所以写一篇来好好记忆一下,下次再忘了就回来看看。内容和OIWIKI有很大部分的重叠,但是更偏向结论和做法,同时舍弃了一些看不懂的。莫比乌斯函数定义:\[\mu(n)=\begin{cases}1&n=1\\0&n含有平方因子(......
  • 二项式反演和 Min-Max 反演小记
    二项式反演本质上是某种容斥。结论为:\[f_i=\sum_{j=0}^i(-1)^j\binom{i}{j}g_j\Leftrightarrowg_i=\sum_{j=0}^i(-1)^j\binom{i}{j}f_j\]更常用的形式是\[f_i=\sum_{j=0}^i\binom{i}{j}g_j\Leftrightarrowg_i=\sum_{j=0}^i(-1)^{i-j}\binom{i}{j}f_j\]证明第二个......
  • [数论]数论函数/莫比乌斯反演
    数论函数/莫比乌斯反演1.1积性函数数论函数:可以认为是定义在整数上的函数。1)积性函数定义(a,b)=1,f(a,b)=f(a)f(b)2)积性函数性质对于积性函数\(f\),是被所有\(p^e\)处的值决定的a=1,f(b)=f(1)f(b)​ \(f(60)=f(4)\timesf(15)=f(4)\timesf(3)\timesf(5......
  • fluent中的阿仑尼乌斯公式
    公式介绍阿伦尼乌斯公式(Arrheniusequation)是由瑞典的阿伦尼乌斯所创立的化学反应速率常数随温度变化关系的经验公式。公式写作$$k=AT^\betaexp(−Ea/RT)$$特别需要说明这个公式的单位:k为反应速率R为摩尔气体常数或通用气常数或普适气体常数,其值为8.314J/(mol·K)T为热力......