首页 > 其他分享 >单位根反演

单位根反演

时间:2023-07-13 21:13:07浏览次数:42  
标签:frac limits sum 单位根 反演 1k omega

命题如下:

$$
\forall k\in Z,[n|k]=\frac{1}{n}\sum\limits_{i=0}{n-1}\omega_n
$$

证明:

设 $[n|k]=1$,则根据单位根性质,我们可以得到:

$$
\sum\limits_{i=0}{n-1}\omega_n=n
$$

设 $[n|k]=0$,则:

$$
\sum\limits_{i=0}{n-1}\omega_n=\frac{\omega_n{nk}-1}{\omega_n-1}=0
$$

由此可知式子成立。

由此可知,如果想要知道一个多项式特定倍数次项的系数之和,就可以这么做:

$$
\begin{aligned}
\sum\limits_{i=0}^{\left\lfloor \frac nk \right\rfloor}[x{ik}]f(x)&=\sum\limits_{i=0}n[k|i][x^i]f(x)\
&=\sum\limits_{i=0}^n [x^i]f(x)\frac 1k\sum\limits_{j=0}{k-1}\omega_k=\frac 1k \sum\limits_{i=0}na_i\sum\limits_{j=0}\omega_n^{ji}\
&=\frac 1k \sum\limits_{j=0}{k-1}\sum\limits_{i=0}na_i(\omega_n{j})i=\frac 1k \sum\limits_{j=0}{k-1}f(\omega_nj)
\end{aligned}
$$

一个推论

$$
[a=b]=\frac 1n \sum\limits_{i=0}{n-1}\omega_n(a,b<n)
$$

证明是显然的。

标签:frac,limits,sum,单位根,反演,1k,omega
From: https://www.cnblogs.com/HeNuclearReactor/p/17552183.html

相关文章

  • 莫比乌斯函数与反演
     莫比乌斯函数的原式是u(n)={1,n=1(-1)^r,n=p1*p2*p3*......*pr 其中p为不同的质数                       0,其他}它有两种解法,分别是欧拉筛和杜教筛下面给出欧拉筛的代码:#include<bits/stdc......
  • 莫比乌斯反演学习笔记
    狄利克雷卷积对于两个数论函数$f(x)$和$g(x)$,他们的卷积结果$h(x)$定义为$h(x)=\sum_{d|x}^{}f(d)g(\frac{x}{d})=\sum_{ab=x}^{}f(a)g(b) $即$h=f*g$满足交换律,结合律,分配律。莫比乌斯函数 $$\mu(n)=\left\{\begin{matrix}1 &n=1\\0 &n含有平方因子\\(-1......
  • 二项式反演和 Min-Max 反演小记
    二项式反演本质上是某种容斥。结论为:\[f_i=\sum_{j=0}^i(-1)^j\binom{i}{j}g_j\Leftrightarrowg_i=\sum_{j=0}^i(-1)^j\binom{i}{j}f_j\]更常用的形式是\[f_i=\sum_{j=0}^i\binom{i}{j}g_j\Leftrightarrowg_i=\sum_{j=0}^i(-1)^{i-j}\binom{i}{j}f_j\]证明第二个......
  • [数论]数论函数/莫比乌斯反演
    数论函数/莫比乌斯反演1.1积性函数数论函数:可以认为是定义在整数上的函数。1)积性函数定义(a,b)=1,f(a,b)=f(a)f(b)2)积性函数性质对于积性函数\(f\),是被所有\(p^e\)处的值决定的a=1,f(b)=f(1)f(b)​ \(f(60)=f(4)\timesf(15)=f(4)\timesf(3)\timesf(5......
  • 莫比乌斯反演 学习笔记
    炫酷反演魔术!莫反会用到的具体性质证明先不写,先写题。与其说是学习笔记,不如说是简要的题解集合。不太想贴太多代码啊,翻起来很烦。P3455[POI2007]ZAP-Queries很基础的一道题。令\(a\leb\),考虑\(k=1\)的情况。\[\begin{aligned}ans&=\sum\limits_{i=1}^a\sum\limits_{j=......
  • bzoj 2839. 集合计数 二项式反演
    集合计数设fi表示恰好交集为k的方案数。设gi表示交集至少为k的方案数。\(g_i=\sum_{j=i}^{n}C(j,i)f_j\)由二项式反演得:\(f_k=\sum_{i=k}^{n}(-1)^{i-k}C(i,k)g_i\)考虑\(g_i\)的求出,钦定\(i\)个数必选那么剩下\(n-i\)个数每个数可选可不选\(2^{n-i}\)但这道题我们选出的......
  • P4859 已经没有什么好害怕的了 二项式反演
    这道题给出两个数组且每个数字都不同。要求两两配对,这样每一个配对都有一个大小关系。要求第一组大的个数比第二组大的恰好k个配对。显然一共有\(n\)个大小关系,那么容易想到\(n-k\)必然是一个偶数才会有对应方案。那么题目其实是要求第一组比第二组大的个数恰好为\(k+\frac{n-k......
  • [MtOI2019]幽灵乐团 / 莫比乌斯反演基础练习题
    [MtOI2019]幽灵乐团/莫比乌斯反演基础练习题题目描述东风谷早苗(KochiyaSanae)非常喜欢幽灵乐团的演奏,她想对她们的演奏评分。因为幽灵乐团有\(3\)个人,所以我们可以用\(3\)个正整数\(A,B,C\)来表示出乐团演奏的分数,她们的演奏分数可以表示为\[\prod_{i=1}^{A}\prod_......
  • P5518 [MtOI2019]幽灵乐团 / 莫比乌斯反演基础练习题
    简要题意计算\[\prod_{i=1}^{A}\prod_{j=1}^{B}\prod_{k=1}^{C}\left(\frac{\text{lcm}(i,j)}{\gcd(i,k)}\right)^{f(type)}\]其中:\[\begin{aligned}f(0)&=1\crf(1)&=i\timesj\timesk\crf(2)&=\gcd(i,j,k)\end{aligned}\]\(T\)组数据,每......
  • 算法学习笔记(24): 狄利克雷卷积和莫比乌斯反演
    狄利克雷卷积和莫比乌斯反演看了《组合数学》,再听了学长讲的……感觉三官被颠覆……目录狄利克雷卷积和莫比乌斯反演狄利克雷卷积特殊的函数函数之间的关系除数函数和幂函数欧拉函数和恒等函数卷积的逆元莫比乌斯函数与莫比乌斯反演求法数论分块(整除分块)莫比乌斯反演的经典结......