首页 > 编程语言 >算法学习笔记(24): 狄利克雷卷积和莫比乌斯反演

算法学习笔记(24): 狄利克雷卷积和莫比乌斯反演

时间:2023-06-08 09:57:20浏览次数:53  
标签:24 frac 卷积 乌斯 sum mu 反演 莫比

狄利克雷卷积和莫比乌斯反演

看了《组合数学》,再听了学长讲的……感觉三官被颠覆……

目录


狄利克雷卷积

如此定义:

\[(f*g)(n) = \sum_{xy = n} f(x)g(y) \]

或者可以写为

\[(f * g)(n) = \sum_{d | n} f(d) g(\frac nd) \]


特殊的函数

  • 单位根 \(\varepsilon\):满足 \(f * \varepsilon = \varepsilon * f = f\)。

\[\varepsilon(n) = \left\{ \begin{gathered} & 1, \text{if n = 1} \\ & 0, \text {otherwise} \end{gathered} \right. \]

  • 幂函数 \(Id_k(n) = n^k\)。特殊的,\(Id_1(n) = n\) 为恒等函数,\(Id_0(n) = 1\) 为常函数,简记为 \(I\)。
  • 除数函数 \(\sigma_k(n) = \sum_{d|n}^{} {d^k}\)。特殊的,\(\sigma_1(n)\) 为因数和函数,简记为 \(\sigma(n)\),\(\sigma_0(n)\) 为因数个数函数,简记为 \(\tau(n)\)。
  • 欧拉函数 \(\varphi(n)\)。质因数分解 \(n = p_1^{c_1}p_2^{c_2}...p_k^{c_k}\),则 \(\varphi(n) = n \prod_{i = 1}^k \cfrac {p_i - 1}{p_i}\)。

这些函数都是积性函数,满足 \(gcd(i, j) = 1 \implies f(ij) = f(i)f(j)\)。


函数之间的关系

除数函数和幂函数

根据定义,我们有

\[(Id_k * I)(n) = \sum_{d|n}^{} {Id_k(d)} = \sum_{d|n}^{} {d^k} = \sigma_k(n) \]

即 \(Id_k * I = \sigma_k\)

欧拉函数和恒等函数

根据卷积:

\[(\varphi * I)(n) = \sum_{d | n}^{} {\varphi(d)} \]

在 \(n = p^k\) 时(\(p\) 为质数),有:

\[\sum_{d|n}^{} {\varphi(d)} = \varphi(1) + \sum_{i = 1}^{k} {\varphi(p^i)} = 1 + \sum_{i = 1}^{k} {p^i - p^{i-1}} = p^m = d \]

所以 \((\varphi * I)(p^k) = p^k\)

将 \(n\) 质因数分解为 \(\prod p^k\),根据积性函数的定义,可知:\((\varphi * I)(n) = n = Id_1(n)\)


卷积的逆元

对于一个函数 \(f\),我们可以如下的定义一个函数 \(g\)。

首先设 \(g(1) = \frac 1 {f(1)}\)。

然后令 \(g(x) = - \frac 1 {f(1)} \sum_{d | x, d > 1}^{} {g(d)f(\frac xd)}\)

于是 \((f * g) = \varepsilon\)

展开带入证明即可。


莫比乌斯函数与莫比乌斯反演

终于到这里了 QwQ

我们定义莫比乌斯函数是 \(I\) 的逆函数,也就是说 \((\mu * I) = \varepsilon\)。

所以,在狄利克雷卷积中:

\[\mu(n) = \begin{cases} 1 & if\ n = 1 \\ 0 & if\ \exists x \exists k, n = kx^2 \\ (-1)^m & n = p_1p_2...p_m \end{cases} \]

至于为什么强调狄利克雷卷积……后文会提及

莫比乌斯函数常用于以下形式

\[g(n) = \sum_{d | n}^{} {f(d)} \iff f(n) = \sum_{d|n}^{} {\mu(d)g(\frac nd)} \]

或者可以写作:

\[f * I = g \iff f = g * \mu \]

而这就是莫比乌斯反演的核心公式。

很简单的公式,根本无需记忆……

求法

和欧拉函数 \(\varphi\) 类似,可以通过线性筛的方法在 \(O(n)\) 内求出。

vector<int> prms;
int mob[N], notp[N];
void getMob(int n) {
    mob[1] = 1;
    for (int i = 2; i <= n; ++i) {
        if (!notp[i])
            mob[i] = -1, prms.push_back(i);

        for (int p : prms) {
            int ip = i * p;
            if (ip > n) break;
            notp[ip] = 1;
            if (i % p == 0) {
                mob[ip] = 0;
                break;
            } else mob[ip] = -mob[i];
        }
    }
}

数论分块(整除分块)

这部分虽然不属于莫比乌斯反演,但是在求很多相关问题的时候需要用到。

开篇膜拜Pecco大佬:# 算法学习笔记(36): 莫比乌斯反演

核心问题:求解 \(\sum_{i = 1}^n \lfloor \frac ni \rfloor, n \le 10^{12}\)。

不难得知, \(\lfloor \frac ni \rfloor\) 不同的取值只有 \(O(\sqrt n)\) 个,并且是连续的。所以考虑对于每一中取值,求出有多少个。也就是说,对于 \(i\),需要求出满足 \(\lfloor \frac ni \rfloor = \lfloor \frac nj \rfloor\) 的最大的 \(j\)。

于是设 \(\lfloor \frac ni \rfloor = k\)

\[\lfloor \frac nj \rfloor = k \implies k \le \frac nj \le k + 1 \\ \implies \frac 1 {k+1} < \frac jn \le \frac 1k \implies j \le \frac nk \implies j \le \lfloor \frac n{\lfloor \frac ni \rfloor} \rfloor \]

也就是说,对于每一个取值 \(\lfloor \frac ni \rfloor\),最大在 \(\lfloor \frac n{\lfloor \frac ni \rfloor} \rfloor\) 时满足。

于是可以这样写出代码:

for (int l = 1, r; l <= n; l = r + 1) {
    r = n / (n / l);
    ans += (r - l + 1) * (n / l);
}

练习题:[CQOI2007]余数求和 - 洛谷


莫比乌斯反演的经典结构

结构1

\[[\gcd(i, j) = 1] = \varepsilon(\gcd(i, j)) = \sum_{d|\gcd(i, j)} \mu (d) \]

于是对于:

\[\begin{aligned} &\sum_{i = 1}^{n}\sum_{j = 1}^m [\gcd(i, j) = 1] \\ = &\sum_{i = 1}^{n}\sum_{j = 1}^m \sum_{d|\gcd(i, j)} \mu (d) \end{aligned} \]

在这里,有一个非常经典的处理方法:提取公因数

也就是枚举 \(gcd(i, j)\)

\[\begin{aligned} = &\sum_{d = 1}^{\min(n, m)} \sum_{i = 1}^{\lfloor \frac ni \rfloor} \sum_{j = 1}^{\lfloor \frac nj \rfloor} \mu(d) \\ = &\sum_{d = 1}^{\min(n, m)} \lfloor \frac nd \rfloor \lfloor \frac md \rfloor \mu (d) \end{aligned} \]

于是最终利用数论分块求即可。复杂度为 \(O(n + \sqrt {\min(n, m)}\)。

但是代码需要注意,每一次取小步跳:

r = min(n / (n / l), m / (m / l));

结构2

\[\gcd(i, j) = Id_1(\gcd(i, j)) = (I * \varphi)(\gcd(i, j)) = \sum_{d | \gcd(i, j)}\varphi(d) \]

于是求 \(\sum_{i = 1}^{n}\sum_{j = 1}^m \gcd(i, j)\) 的方法与结构1类似即可。

结构3

\[\begin{aligned} \sigma_0(x) &= \sum_{k | x} 1 \\ \sigma_0(xy) &= \sum_{i | x} \sum_{j | y} [\gcd(i, j) = 1] \end{aligned} \]

于是求 \(\sum_{x = 1}^n \sum_{y = 1}^m \sigma_0(xy)\) 也就很简单了。

结构4

令 \(P\) 表示质数集合,求:

\[\sum_{i = 1}^n \sum_{j = 1}^m [gcd(i, j) \in P] \]

我们首先提取公因数:

\[= \sum_{p \in P} \sum_{i = 1}^{\lfloor \frac np \rfloor} \sum_{j = 1}^{\lfloor \frac mp \rfloor} [gcd(i, j) = 1] \]

于是根据模型1:

\[= \sum_{p \in P} \sum_{x = 1}^{\lfloor \frac {\min(n, m)}{p} \rfloor} \mu(x) \lfloor \frac n{px} \rfloor \lfloor \frac n{px} \rfloor \]

接下来是一个非常经典的套路:枚举 \(T = px\)

\[= \sum_{T = 1}^{\min(n, m)} \lfloor \frac nT \rfloor \lfloor \frac mT \rfloor \sum_{p | T, p \in P} \mu(\frac Tp) \]

于是问题转化为求 \(\sum_{p | T, p \in P} \mu(\frac Tp)\) 的前缀和,这样就可以单次询问 \(O(\sqrt n)\)。

这完全可以通过埃氏筛筛出,复杂度 \(O(n \log \log n)\),十分优秀。

不过也可以通过线性筛筛出(因为这个函数非积性函数,所以这里不展开)

类似的题还有 [国家集训队]Crash的数字表格 / JZPTAB - 洛谷

问题:\(\sum_{i = 1}^n \sum_{j = 1}^m lcm(i, j)\)。

[SDOI2014]数表 - 洛谷

问题:\(\sum_{i = 1}^n \sum_{j = 1}^m \sigma(gcd(i, j))\)

不过这道题要难一些,因为涉及到了更多的操作。


结构总结

在这类莫比乌斯反演中,经典的两个套路:

  • 提取公因数

  • 枚举 \(T = px\)

其实在 Pecco 的文章中,对于提取公因数这个方法有更加深刻的阐释。其不仅能应用在只有 \(i, j\) 两个变量的模型中,还可以扩展到更多的变量上。

再次膜拜大佬:# 算法学习笔记(36): 莫比乌斯反演


其实一般讲莫比乌斯反演到这里就没有了,但是我看了《离散数学》中的莫比乌斯反演一章。我发现两者根本不在同一个位阶上……这就是颠覆我认知的原因。

所以这里我还要把莫比乌斯反演扩展出来。


莫比乌斯再认识

我们考虑这么一个情况:

有集合 \(X\) 和偏序关系 \((P(X), \subseteq)\),设:

\[F : P(X) \to \R \quad G : P(X) \to \R \]

其中:\(G(S) = \sum_{T \subseteq S}F(T)\)。

则可以求得:\(F(S) = \sum_{T \subseteq S}(-1)^{|S| - |T|}G(T)\)

由 \(G\) 求的 \(F\) 的过程称为反解,其中,\((-1)^{|S|-|T|}\) 就是莫比乌斯函数在这种情况下的取值,也称为容斥系数。

顺便回顾一下基本容斥原理:

设 \(A_1, A_2, \cdots, A_n\) 是有限集 \(S\) 的子集(代表 \(n\) 中属性?)定义 \(F(K)\) (\(K\) 为下标集合,\(\subseteq \{1, 2, \cdots, n\}\))为集合 \(S\) 中 \(\in A_i (i \not\in K)\) 的元素的个数。也就是对于 \(s \in S\),计数 \(s\) 当且仅当:

\[\forall i \in K, s \notin A_i \qquad \forall j \not\in K, s \in A_j \]

于是设 \(G(K) = \sum_{L \subseteq K}F(L)\),

其计数 \(S\) 中属于 \(j\) 不在 \(K\) 中的所有 \(A_j\) 的元素,以及属于其他的一些集合的元素的个数。因而还有:

\[G(K) = | \bigcap_{i \not\in K} A_i | \]

根据上文,有

\[F(K) = \sum_{L \subseteq K} (-1)^{|K| - |L|}G(L) \tag{1} \]

此时 \(F(X_n)\quad (X_n = \{1, 2, \cdots, n\})\) 计数的是那些仅属于满足 \(i \not\in X_n\) 的集合 \(A_i\) 的元素,因此:

\[F(X_n) = | \bigcap_{i \in X_n} \overline{A_i}| \]

带入 \((1)\) 中可以得到:

\[| \overline{A_1} \cap \overline{A_2} \cap \cdots \cap \overline{A_n}| = \sum_{L \subseteq X_n} (-1)^{n - |L|} | \bigcap_{i \not\in L} A_i| \]

如过等价的利用 \(L\) 的补集,那么我们有:

\[| \overline{A_1} \cap \overline{A_2} \cap \cdots \cap \overline{A_n}| = \sum_{J \subseteq X_n} (-1)^{J} | \bigcap_{i \in J} A_i| \]

这就是基本的容斥原理。


二项式反演

为什么突然到这里了……

二项式反演可以说是上面内容的一种特殊形式。其满足:

\[|S| = |T| \implies F(S) = F(T), G(S) = G(T) \]

此时我们可以直接通过集合大小表示:\(F(S) = f(|S|), G(S) = g(|S|)\)

于是对于 \(G(K) = \sum_{L \subseteq K} F(L)\),合并相同大小的子集,即可得到:

\[g(k) = \sum_{l = 0}^{k} {k \choose l} f(l) \]

根据反演,也就有:

\[f(k) = \sum_{l = 0}^k (-1)^{k - l} {k \choose l} g(l) \]

这也就是二项式反演在此的推导,这里的莫比乌斯函数 \(\mu\),后文再说。


扩展到偏序集

在此,我们扩展到任意有限偏序集 \((X, \le)\)。不过为了得到莫比乌斯函数,我们首先考虑二元变量。

设 \(\mathbb{F}(X)\) 是满足只要 \(x \not \le y\) 就有 \(f(x, y) = 0\) 的所有实数函数的集合。

\[f: X \times X \to \R \]

我们如此定义卷积 \(h = f * g\):

\[h(x, y) = \begin{cases} \sum_{\{z: x \le z \le y\}} f(x, z)g(z, y) & (x \le y) \\ 0 & otherwise \end{cases} \]

不难证明卷积满足结合律,这部分留个读者思考。

于是,我们重新定义如下函数:

  • 单位函数(克罗内克 delta 函数):

\[\delta(x, y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise } \end{cases} \]

  • 常数函数(zeta function):

\[\zeta(x, y) = \begin{cases} 1 & \text{if } x \le y \\ 0 & \text{otherwise} \end{cases} \]

至于莫比乌斯函数,与上文的定义类似,也就是 \(\zeta\) 的逆函数:

\[\mu * \zeta = \delta \]

于是通过卷积的定义,我们得到:

\[\sum_{\{z: x \le z \le y\}} \mu(x, z)\zeta(z, y) = \delta(x, y) \qquad (x \le y) \]

或等价的:

\[\sum_{\{z: x \le z \le y\}} \mu(x, z) = \delta(x, y) \qquad (x \le y) \tag{2.1} \]

而等式 \((2.1)\) 意味着,对于所有的 \(x\):

\[\mu(x, x) = 1 \]

以及:

\[\mu(x, y) = -\sum_{\{z: x \le z \lt y\}} \mu(x, z) \qquad (x < y) \]

至于莫比乌斯反演,无非还是:

\[f * \zeta = g \iff f = g * \mu \]


于是我们重新思考二项式反演,其实就是偏序集 \((P(X_n), \subseteq)\) 上的莫比乌斯反演。

设 \(A\) 和 \(B\) 是 \(X_n\) 的子集,且 \(A \subseteq B\),有 \(\mu(A, B) = (-1)^{|B| - |A|}\)。

这可以通过归纳假设证明,这里不过多展开。


开篇讲的狄利克雷卷积上的莫比乌斯反演,其实就是偏序集 \((\Z, |)\) 上的莫比乌斯反演。

这东西谁都知道,一元的莫比乌斯函数 \(\mu(x)\) 怎么求。不过我们的目标是计算该偏序集的 \(\mu(a, b)\)。

但是,由于如果 \(a | b\) 则 \(\mu(a, b) = \mu(1, \frac ba)\)。所以我们只需要算 \(\mu(1, x)\) 即可。

而 \(\mu(x)\) 其实就是 \(\mu(1, x)\) ……


考虑离散傅立叶变换。

越扯越远了……QwQ

不了解离散傅立叶变换的可以参考:算法学习笔记(17): 快速傅里叶变换(FFT)

我们不是有:

\[h(\omega^x) = \sum_{k = 0}^{n - 1} c_k \omega^{kx} \]

我们整理一下重新写出:

\[g(x) = \sum_{k = 0}^{n - 1} \omega^{kx} f(k) \]

根据离散傅立叶逆变换,则有:

\[f(x) = \frac 1n \sum_{k = 0}^{n - 1} \omega^{-kx} g(k) \]

其中,\(\frac 1n \omega^{-kx}\) 就是容斥系数,\(\mu(k, x)\)。


最后的最后,提一个题吧:[春季测试 2023] 幂次 - 洛谷

其实也可以通过容斥(求 \(\mu\))求解,但并非反演。

参见博客:幂次 - Jijidawang

标签:24,frac,卷积,乌斯,sum,mu,反演,莫比
From: https://www.cnblogs.com/jeefy/p/17465321.html

相关文章

  • HDU - 2473 (并查集+设立虚父节点(马甲))
    涉及到并查集的删除操作,比较复杂,可以利用虚设父节点的方法:例如:有n个节点,进行m次操作.首先将0~n-1的节点的父节点设置为i+n,n~2n+1的节点的父节点设置为本身,有m次操作,所以要用到m个虚节点,例如0,1,2,3,4,5的父节点为7,8,9,10,11,把他们插入2的集合,所以他们的根节点都为8,当把2从集合......
  • Luogu P3224 [HNOI2012]永无乡
    [HNOI2012]永无乡题目描述永无乡包含\(n\)座岛,编号从\(1\)到\(n\),每座岛都有自己的独一无二的重要度,按照重要度可以将这\(n\)座岛排名,名次用\(1\)到\(n\)来表示。某些岛之间由巨大的桥连接,通过桥可以从一个岛到达另一个岛。如果从岛\(a\)出发经过若干座(含\(0\)......
  • TLE7244SL-ASEMI代理英飞原装汽车芯片TLE7244SL
    编辑:llTLE7244SL-ASEMI代理英飞原装汽车芯片TLE7244SL型号:TLE7244SL品牌:Infineon(英飞凌)封装:SSOP-24-150mil类型:电源负载开关TLE7244SL特性4个输入引脚,提供灵活的PWM配置由专用引脚提供跛行回家功能(直接驾驶)用于诊断和控制的16位SPI菊花链功能也与8位SPI设备兼容数字电源电压范围......
  • TLE7244SL-ASEMI代理英飞原装汽车芯片TLE7244SL
    编辑:llTLE7244SL-ASEMI代理英飞原装汽车芯片TLE7244SL型号:TLE7244SL品牌:Infineon(英飞凌)封装:SSOP-24-150mil类型:电源负载开关TLE7244SL特性4个输入引脚,提供灵活的PWM配置由专用引脚提供跛行回家功能(直接驾驶)用于诊断和控制的16位SPI菊花链功能也与8位SPI设备兼容数字......
  • 莫比乌斯反演
    这里讲述几个莫比乌斯反演的套路技巧。我们从一道道例题讲起。\(\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(i,j)=1]=\sum_{i=1}^n\mu(i)\lfloor\frac{n}{i}\rfloor^2\)这就是一般公式\([gcd(i,j)=1]=\sum_{d|i,d|j}^n\mu(d)\)的衍生,不会做不了题。暴力算\(\gcd\)转换为枚举......
  • 链表:剑指 Offer 24. 反转链表
    题目描述:  方法:迭代(双指针) classSolution{publicListNodereverseList(ListNodehead){ListNodecur=head,pre=null;while(cur!=null){ListNodetmp=cur.next;//暂存后继节点cur.nextcur.next=p......
  • 数据结构与算法分析(Java语言描述)(24)—— 并查集的路径压缩
    packagecom.dataStructure.union_find;//我们的第五版Union-FindpublicclassUnionFind5{//rank[i]表示以i为根的集合所表示的树的层数//在后续的代码中,我们并不会维护rank的语意,也就是rank的值在路径压缩的过程中,有可能不在是树的层数值//这也是......
  • 二项式反演两题
    例题一[JSOI2011]分特产题目描述JYY带队参加了若干场\(\text{ACM/ICPC}\)比赛,带回了许多土特产,要分给实验室的同学们。JYY想知道,把这些特产分给\(n\)个同学,一共有多少种不同的分法?当然,JYY不希望任何一个同学因为没有拿到特产而感到失落,所以每个同学都必须至少分得一个......
  • 【反演】基于遗传算法实现均匀地层模型随钻电磁波测井反演附matlab代码
    ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。......
  • 24基于java的宠物医院管理系统
    项目背景随着互联网的普及,已经和我们的生活不可分割;宠物渐渐的已经成为了我们的好朋友,宠物医院管理系统可以帮助用户合理的管理宠物,呵护宠物的健康,对宠物起到了一个健康监控的作用;项目介绍系统总体分为3个角色:分别是系统管理员;医生和用户;不能的角色拥有不同的功能权限,下面详......