向量的旋转一共有三种表示方法:旋转矩阵、欧拉角和四元数,接下来我们介绍一下每种旋转方法的原理以及相互转换方式。
旋转矩阵
坐标变换的作用
在一个机器人系统中,每个测量元件测量同一物体得出的信息是不一样的,原因就在于“每个测量元件所测量的数据是基于不同坐标系所测量的”,例如:
在这辆车中有激光雷达M和激光雷达W,这两个雷达测量的数据截然不同,但是这辆汽车相对于测量物体的位置是唯一的,这就说明“由不同位置雷达测量的数据代表的物理含义(即都表示汽车与被测物体的相对位置)是相同的”。那既然被测物体在不同坐标系中的坐标不同但物理含义相同,这就涉及到不同坐标系中坐标的相互转化。下面这个视频将使你对坐标变换有一个初步的认识:
https://www.bilibili.com/video/av808747163/?zw
我们会疑惑:world坐标系是什么?
在空间中会有n+1个坐标系,其中只有一个坐标系起到标定作用,也就是说“其他n个坐标系全都是基于该坐标系找到自己在空间中的位置的”。只有大家都知道了自己在该坐标系空间中的具体位置,坐标转换才可以顺利进行下去。
实现坐标变换所需的数据
我们常用出发于坐标系原点终止于坐标点的向量,来表示坐标点相对于坐标原点的位置(距离+方位)。坐标系的相互转化必须以地球坐标系为媒介才可以实现,即坐标系的相互转化必须已知“任意坐标系中各个坐标轴在world坐标系中的坐标”:
在描述机器人运动时,我们常常提及“位姿”,其实位姿是一个合成词,我们可以将其拆解为“位置+姿态”。位置就是指“机器人某个运动关节/测量传感器在世界坐标系中的具体位置,姿态就是”基于该点的坐标系相较于世界坐标系所进行的旋转“,如下所示:
坐标变换中旋转的实质
坐标变换的实质就是“投影”。首先,我们解读一下向量是如何转化为坐标的:
理解向量坐标的由来对于理解坐标变换的实质至关重要!接下来我们考虑一下单位向量在坐标系中的投影:
我们将坐标系A作为参考坐标系(world坐标系),基于坐标系A表示坐标系B的各个坐标轴并且将各个向量单位化,由此我们得到一个旋转矩阵,旋转矩阵各个元素的含义如下:
我们先前提到过,向量坐标的计算无非就是投影,那么向量坐标从坐标系B转换至坐标系A无非就是两次投影而已:
坐标转换的实际意义无非就是将向量P在坐标系A中各个轴的投影分别累加起来形成一个新的坐标。那问题来了,累加如何操作呢?这就涉及旋转矩阵以及矩阵乘法运算了。
其实,这个矩阵的乘法与卷积有着异曲同工之妙。旋转矩阵的性质:
坐标变换中平移的实质
向量可以在坐标系中任意移动,只要不改变向量的方向和大小,向量的属性不会发生变化。但是我们研究的是坐标系B中一个坐标点在坐标系A中的映射,因此需要考虑坐标系B的原点O2相较于坐标系A原点O1平移的距离。
每个基于坐标系B的向量先进性旋转变换,再与向量O1O2求和,即可得到向量P再坐标系A中的实际映射。
如何计算坐标系B各坐标轴在坐标系A上的投影?(多坐标变换)
首先,我们要知道世界坐标系下坐标系A/坐标系B的各个坐标轴在世界坐标系(参考坐标系)的坐标:
标签:欧拉角,变换,矩阵,旋转,四元,坐标,坐标系,向量 From: https://www.cnblogs.com/zhjblogs/p/16736101.html