https://pytorch.org/tutorials/recipes/recipes/saving_and_loading_a_general_checkpoint.html
保存和加载checkpoints很有帮助。
为了保存checkpoints,必须将它们放在字典对象里,然后使用torch.save()
来序列化字典。一个通用的PyTorch做法时使用.tar
拓展名保存checkpoints。
加载时,首先需要初始化模型和优化器,然后使用torch.load()
加载
定义
import torch
import torch.nn as nn
import torch.optim as optim
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
保存checkpoints
# Additional information
EPOCH = 5
PATH = "model.pt"
LOSS = 0.4
torch.save({
'epoch': EPOCH,
'model_state_dict': net.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': LOSS,
}, PATH)
加载
model = Net()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
checkpoint = torch.load(PATH)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint['epoch']
loss = checkpoint['loss']
model.eval()
# - or -
model.train()
标签:nn,self,torch,state,PyTorch,dict,checkpoints,model,加载
From: https://www.cnblogs.com/x-ocean/p/16861255.html