首页 > 其他分享 >【Basic Abstract Algebra】Exercises for Section 3.3 — Homomorphism of groups

【Basic Abstract Algebra】Exercises for Section 3.3 — Homomorphism of groups

时间:2024-12-26 20:43:46浏览次数:3  
标签:mathbb Aa bar Algebra Abstract mid varphi Homomorphism homomorphism

  1. Find out all possible homomorphism from \(\mathbb Z_7\to\mathbb Z_{12}\).
    Solution: Let \(\varphi\) be such a homomorphism. Since \(\mathbb Z_7\) is a cyclic group, so \(\varphi\) is specified by \(\varphi(\bar1)\). Since \(o(\bar 1)=7\), we have \(o(\varphi(\bar 1))\mid 7\). And \(o(\varphi(\bar1))\mid 12\) by Lagrange's Theorem. Thus, \(o(\varphi(\bar 1))\mid\gcd(7,12)=1\), i.e., \(o(\varphi(\bar 1))=1\), \(\varphi(\bar1)=\bar0\). Therefore, \(\varphi(\bar x)=\bar0\).

  2. Let \(A\) be \(m\times n\) matrix. Show that map

    \[\begin{aligned} \varphi:~\mathbb R^n&\to\mathbb R^m\\ a&\mapsto Aa \end{aligned} \]

    is a homomorphism.
    Proof: Clearly, the map is well defined since for any \(a\in\mathbb R^n\), \(\exists! Aa\in\mathbb R^m\), s.t. \(\varphi(a)=Aa\). Note that

    \[\varphi(a+b)=A(a+b)=Aa+Ab=\varphi(a)+\varphi(b). \]

    Thus, \(\varphi\) is a homomorphism.

标签:mathbb,Aa,bar,Algebra,Abstract,mid,varphi,Homomorphism,homomorphism
From: https://www.cnblogs.com/sufewsj/p/18634145

相关文章

  • 【Basic Abstract Algebra】Exercises for Section 3.2 — Normal subgroups and fact
    If\(H<G\)and\([G:H]=2\),showthat\(H\triangleleftG\).Proof:If\([G:H]=2\),then\(gH=Hg\)forall\(g\inG\),so\(H\triangleleftG\).【BasicAbstractAlgebra】ExercisesforSection3.1—CosetsandLagrange'sTheorem-只会......
  • 【Basic Abstract Algebra】Exercises for Section 3.1 — Cosets and Lagrange's The
    Let\(G\)beafinitegroupand\(H<G\).If\([G:H]=2\),then\(gH=Hg\).Proof:If\([G:H]=2\),thenthereareonlytwocosetsof\(H\)in\(G\),andoneofthecosetsis\(H\)itself,i.e.,\[G=H\cupgH=H\cupHg,\]where\(H\cap......
  • 【Basic Abstract Algebra】Exercises for Section 2.5 — Dihedral groups
    Writedownthedihedralgroup\(D_5\).Solution:\(D_5=\langr,s\mids^2=r^5=1,~srs=r^{-1}\rang\),where\(r=(12345),~s=(15)(24)\),i.e.\(D_5=\{\text{id},s,r,r^2,r^3,r^4,rs,r^2s,r^3s,r^4s\}\).Wehave\[\begin{aligned}&r^2=(13524),~r......
  • 【Basic Abstract Algebra】Exercises for Section 2.4 — Permutation groups
    Computetheinverseof\((465312)\).Solution:Since\((465312)=(42)(41)(43)(45)(46)\),wehave\((465312)^{-1}=(46)(45)(43)(41)(42)=(421356)\).#Let\(G\)beagroupanddefineamap\(\lambda_g:G\toG\)by\(\lambda_g(a)=ga\).Provet......
  • 【Basic Abstract Algebra】Exercises for Section 2.2 — Subgroups
    Let\(H\)beasubgroupof\(G\),if\(g\inG\),showtha\[gHg^{-1}=\{g^{-1}hg\midh\inH\}\]isalsoasubgroupof\(G\).Proof:Since\(e~(\text{identity})\ingHg^{-1}\subseteqG\),\(gHg^{-1}\)isnonempty.Forany\(g^{-1}h_1g,......
  • QAbstractBarSeries 类
    QAbstractBarSeries类QAbstractBarSeries是Qt图表模块中所有柱状图系列类的抽象父类。它用于定义柱状图的基本行为和属性,如柱宽、标签位置、数据管理等。核心功能与特点支持多种柱状图系列:继承类包括:QBarSeries、QStackedBarSeries、QPercentBarSeries、QHorizont......
  • 【Basic Abstract Algebra】Exercises for Section 1.5
    Let\(a\)beanonzerointegerand\(n\neq0\)beanaturalnumber.Then\(\gcd(a,n)=1\)ifandonlyifthereexistsamultiplicationinverse\(b\)suchthat\(ab\equiv1(\modn)\).Proof:\((\Longrightarrow)\)Let\(\gcd(a,b)=1\),the......
  • 了解AQS(AbstractQueuedSynchronizer)
    AQS(AbstractQueuedSynchronizer)是Java并发包中的一个核心同步器框架,它定义了一套多线程访问共享资源的同步机制。一、AQS的定义AQS,全称AbstractQueuedSynchronizer,即抽象队列同步器,是Java中的一个抽象类。它是构建锁或者其他同步组件的基础框架,通过继承AQS,子类可以实现自己的......
  • JDK17 AbstractQueuedSynchronizer 二 条件队列
    条件队列同步队列中的线程是为了争抢锁,而条件队列中的线程是主动释放锁,挂起自己,等条件满足时被别的线程唤醒,继续工作。AQS里只有1个同步队列,但可以有多个等待队列,每个等待队列对应一个ConditionObject对象。publicstaticvoidmain(String[]args){ ReentrantLocklo......
  • JDK17 AbstractQueuedSynchronizer 一 同步队列
    AQS抽象队列同步器是JDK提供的用于管理线程间同步状态的类。常见的同步器类ReentrantLock,CountDownLatch,Semaphore等都是AbstractQueuedSynchronizer的子类。AQS提供三个功能提供同步状态。一个是state属性,管理资源的状态。一个是AQS的父抽象类的exclusiveOwnerThread......