首页 > 其他分享 >【Basic Abstract Algebra】Exercises for Section 2.2 — Subgroups

【Basic Abstract Algebra】Exercises for Section 2.2 — Subgroups

时间:2024-12-09 20:20:55浏览次数:3  
标签:mathbb matrix Algebra Abstract cdots gHg 1g Basic mathcal

  1. Let \(H\) be a subgroup of \(G\), if \(g\in G\), show tha

    \[gHg^{-1}=\{g^{-1}hg\mid h\in H\} \]

    is also a subgroup of \(G\).
    Proof: Since \(e~(\text{identity})\in gHg^{-1}\subseteq G\), \(gHg^{-1}\) is nonempty. For any \(g^{-1}h_1g,~g^{-1}h_2g\in gHg^{-1}\), note that

    \[(g^{-1}h_1g)(g^{-1}h_2g)^{-1}=g^{-1}h_1gg^{-1}h_2^{-1}g=g^{-1}h_1h_2^{-1}g, \]

    and \(h_1h_2^{-1}\in H\) by \(h_1,h_2\in H\le G\). It follows that \((g^{-1}h_1g)(g^{-1}h_2g)^{-1}\in gHg^{-1}\). Thus \(gHg^{-1}\le G\).

  2. Let \(G\) be a group and \(g\in G\). Show that the center of \(G\): \(\mathcal Z(G)=\{x\in G\mid gx=xg,~g\in G\}\) is a subgroup of \(G\). And compute the center of \(GL_n(\mathbb R),SL_n(\mathbb R)\).
    Proof: Clearly, the identity \(e\in\mathcal Z(G)\), i.e. \(\mathcal Z(G)\) is not empty. For any \(x_1,x_2\in\mathcal Z(G)\), we have \(gx_1=x_1g,~gx_2=x_2g\). Then

    \[g(x_1x_2^{-1})=x_1gx_2^{-1}=x_1gx_2^{-1}g^{-1}g=x_1g(gx_2)^{-1}g=x_1g(x_2g)^{-1}g=x_1gg^{-1}x_2^{-1}g=(x_1x_2^{-1})g. \]

    So \(x_1x_2^{-1}\in \mathcal Z(G)\). Thus \(\mathcal Z(G)\le G\).

    (1) The center of \(GL_n(\mathbb R):~\mathcal Z(GL_n(\mathbb R))=\{cE\mid c\in\mathbb R,E ~\text{is the identity matrix}\}\).

    • Let \(P\in\mathcal Z(GL_n(\mathbb R))\), then for any \(A\in GL_n(\mathbb R)\), we have \(AP=PA\). Suppose that \(A=\left(\begin{matrix} -1&0&\cdots&0\\0&1&\cdots&0\\\vdots&\vdots&&\vdots\\0&0&\cdots&1\end{matrix}\right)\in GL_n(\mathbb R)\), then by \(AP=PA\), we obtain that the first row and the first column of \(P\) are all \(0\) except the main diagonal element. Similarly, let \(A=(e_1,-e_2,\cdots,e_n),\cdots,(e_1,e_2,\cdots,-e_n)\), we can obtain that \(P\) is a diagonal matrix.
    • Moreover, let \(A\) be a permutation elementary matrix. By simple calculation, we can obtain \(P=cE\), where \(E\) is the identity matrix and \(c\in\mathbb R\).

    (2) The center of \(SL_n(\mathbb R):~\mathcal Z(SL_n(\mathbb R))=E\).

    • \(|cE|=1\Rightarrow c=1\).

标签:mathbb,matrix,Algebra,Abstract,cdots,gHg,1g,Basic,mathcal
From: https://www.cnblogs.com/sufewsj/p/18595972

相关文章

  • 易宝OA BasicService Sql注入漏洞复现
    0x01产品描述:        易宝OA系统是一种专门为企业和机构的日常办公工作提供服务的综合性软件平台,具有信息管理、流程管理、知识管理(档案和业务管理)、协同办公等多种功能。0x02漏洞描述:        易宝OABasicService 接口处存在SQL注入漏洞,未经身份验证......
  • QAbstractBarSeries 类
    QAbstractBarSeries类QAbstractBarSeries是Qt图表模块中所有柱状图系列类的抽象父类。它用于定义柱状图的基本行为和属性,如柱宽、标签位置、数据管理等。核心功能与特点支持多种柱状图系列:继承类包括:QBarSeries、QStackedBarSeries、QPercentBarSeries、QHorizont......
  • Kali Linux核心命令与基础概念(Kali Linux Core Commands and Basic Concept)
     ......
  • 【Basic Abstract Algebra】Exercises for Section 1.5
    Let\(a\)beanonzerointegerand\(n\neq0\)beanaturalnumber.Then\(\gcd(a,n)=1\)ifandonlyifthereexistsamultiplicationinverse\(b\)suchthat\(ab\equiv1(\modn)\).Proof:\((\Longrightarrow)\)Let\(\gcd(a,b)=1\),the......
  • basic认证爆破
    简单记录,如有不足请多担待引言练习地址:Vulfocus漏洞威胁分析平台的tomcat-pass-getshell弱口令题目由于这道题原本是弱口令的题,但是这里使用到了basic认证,所以那这个做简单的爆破测试,但是这个负载有点小,所以在设置字典的时候得自己设置几个,进行简单的爆破测试......
  • [Vue Form] Basic Select component
    <template><labelv-if="label">{{label}}</label><selectclass="field":value="modelValue"v-bind="{...$attrs,onChange:($event)=>{$emit('update:modelValue&......
  • 了解AQS(AbstractQueuedSynchronizer)
    AQS(AbstractQueuedSynchronizer)是Java并发包中的一个核心同步器框架,它定义了一套多线程访问共享资源的同步机制。一、AQS的定义AQS,全称AbstractQueuedSynchronizer,即抽象队列同步器,是Java中的一个抽象类。它是构建锁或者其他同步组件的基础框架,通过继承AQS,子类可以实现自己的......
  • JDK17 AbstractQueuedSynchronizer 二 条件队列
    条件队列同步队列中的线程是为了争抢锁,而条件队列中的线程是主动释放锁,挂起自己,等条件满足时被别的线程唤醒,继续工作。AQS里只有1个同步队列,但可以有多个等待队列,每个等待队列对应一个ConditionObject对象。publicstaticvoidmain(String[]args){ ReentrantLocklo......
  • JDK17 AbstractQueuedSynchronizer 一 同步队列
    AQS抽象队列同步器是JDK提供的用于管理线程间同步状态的类。常见的同步器类ReentrantLock,CountDownLatch,Semaphore等都是AbstractQueuedSynchronizer的子类。AQS提供三个功能提供同步状态。一个是state属性,管理资源的状态。一个是AQS的父抽象类的exclusiveOwnerThread......
  • Zariski交换代数经典教材Commutative Algebra系列(pdf可复制版)
    Zariski的名字估计学代数几何的人都耳熟能详,先是入门时期的交换代数教材,然后就是深入研究时期随处可见的Zariski拓扑。本帖我们分享的便是著名的Zariski交换代数教材。OscarZariski&PierreSamuel写的交换代数经典教材CommutativeAlgebra,该教材也是学习代数几何的经典......