首页 > 其他分享 >【Basic Abstract Algebra】Exercises for Section 1.5

【Basic Abstract Algebra】Exercises for Section 1.5

时间:2024-12-06 21:54:51浏览次数:3  
标签:mathbb 1.5 ab gcd exists Algebra Abstract ap ar

  1. Let \(a\) be a nonzero integer and \(n\neq 0\) be a natural number. Then \(\gcd(a,n)=1\) if and only if there exists a multiplication inverse \(b\) such that \(ab\equiv1 (\mod n)\).
    Proof: \((\Longrightarrow)\) Let \(\gcd(a,b)=1\), then \(\exists r,s\in \mathbb Z,~s.t.~ar+ns=1\Rightarrow ar=n(-s)+1\). Let \(b=r\), then \(ab=n(-s)+1\equiv 1(\mod n)\).
    \((\Longleftarrow)\) Suppose \(\exists b\in\mathbb Z,~s.t.~ab\equiv1(\mod n)\). Then there exists \(p\in\mathbb Z\), such that \(ab=np+1\). Thus \(ab+n(-p)=1\), that is \(\gcd(a,n)=1\). #

  2. \(a=165,~b=234\). Calculate \(\gcd(a,b)\) and find integers \(r\) and \(s\) such that \(\gcd(a,b)=ar+bs\).
    Solution: Using the Euclidean algorithm:

    \[\begin{cases} 234=165\times1+69,\\ 165=69\times2+27,\\ 69=27\times2+15,\\ 27=15\times1+12,\\ 15=12\times1+3,\\ 12=3\times4+0 \end{cases} \Rightarrow \gcd(a,b)=3 \]

    Note that

    \[\begin{aligned} 3&=15-12=15-(27-15)=-27+2\times15\\ &=-27+2\times(69-2\times27)=2\times69+(-5)\times27\\ &=2\times69+(-5)\times(165-2\times69)=(-5)\times165+12\times69\\ &=(-5)\times165+12\times(234-165)=(-17)\times165+12\times234. \quad\# \end{aligned} \]

  3. Show that \(\text{lcm}(a,b)=ab\Longleftrightarrow \gcd(a,b)=1\).
    Proof: \((\Longrightarrow)\) Let \(\text{lcm}(a,b)=ab\), we want to show that \(\gcd(a,b)=1\). Suppose that \(\gcd(a,b)=d>1\), then \(\exists k,l\in\mathbb Z,~s.t.~ a=dk,~b=dl\). It shows that \(dkl\) is a common multiple of \(a\) and \(b\), and \(dkl<d^2kl=ab\). It is contradicts the fact that \(\text{lcm}(a,b)=ab\).
    \((\Longleftarrow)\) Let \(\gcd(a,b)=1\), we want to show that \(\text{lcm}(a,b)=ab\). Since \(\gcd(a,b)=1\), \(\exists r,s\in\mathbb Z\), such that \(1=ar+bs\). Suppose that \(m\) is a common multiple of \(a\) and \(b\), we want to show that \(ab\mid m\). Since \(m\) is a common multiple of \(a\) and \(b\), we have \(m=ap=bq,~ p,q\in\mathbb Z\). Note that

    \[m=ap=ap\cdot1=ap(ar+bs)=(ap)(ar)+abps=(bq)(ar)+abps=ab(ps+qr), \]

    that is \(ab\mid m\). Thus \(\text{lcm}(a,b)=ab\).

  4. If \(d=\gcd(a,b)\) and \(m=\text{lcm}(a,b)\). Prove that \(dm=|ab|\).
    Proof: Without loss of generality, Let \(a,b\in\mathbb Z_+\). Since \(d=\gcd(a,b)\), \(\exists r,s\in\mathbb Z\), such that \(d=ar+bs\). Since \(m=\text{lcm}(a,b)\), it follows that \(\exists p,q\in\mathbb Z\), such that \(m=ap=bq\). Therefore,

    \[dm=(ar+bs)(ap)=(ar)(ap)+absp=(ar)(bq)+absp=ab(ps+qr). \]

    We want to show that \(ps+qr=1\), i.e. \(\gcd(p,q)=1\). Suppose that \(\gcd(p,q)=d'>1\). Then \(\exists k,l\in\mathbb Z\), such that \(p=kd',q=ld'\). Therefore, \(ap=bq\Longleftrightarrow ak=bl:=m'\) and \(m'<m\). It contradicts that \(m=\text{lcm}(a,b)\). #

  5. If \(p\) and \(q\) are distinct primes, the \(\sqrt{pq}\) is not a rational number.
    Proof: Suppose that \(\sqrt{pq}=\frac{n}{m}\), \(m,n\in\mathbb N_+\) and \(\gcd(m,n)=1\). Then \(pq=\frac{n^2}{m^2}\Rightarrow n^2=pqm^2\Rightarrow p\mid n^2\Rightarrow p\mid n\). Write \(n=pr,~r\in\mathbb Z\). Then \(p^2r^2=pqm^2\Rightarrow pr^2=qm^2\). So \(p\mid qm^2\). Since \(p\) and \(q\) are distinct primes, we have \(\gcd(p,q)=1\). Thus \(p\mid m^2\Rightarrow p\mid m\). Since \(p\mid m,~p\mid n\) and \(p>1\), it follows that \(\gcd(m,n)\ge p>1\). \(\to\leftarrow\). #

标签:mathbb,1.5,ab,gcd,exists,Algebra,Abstract,ap,ar
From: https://www.cnblogs.com/sufewsj/p/18591480

相关文章

  • Fish Speech 更新V1.5:领先的多语言文本转语音模型
    FishSpeechV1.5:领先的多语言文本转语音模型简介FishSpeechV1.5是一个基于超过100万小时多种语言音频数据训练的先进文本转语音(TTS)模型。它以其高质量的语音输出和广泛的语言支持而闻名。支持的语言FishSpeechV1.5支持以下语言:英语(en):超过300,000小时中文(zh):超过300,......
  • 基于 easyExcel 3.1.5依赖的包 实现动态表头 动态表格内容
    1.需求:需要导出的EXCEL示例: 2.依赖:<dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>3.1.5</version></dependency>3.工具类:package......
  • Fish Speech 1.5 发布,TTS-Arena 排名开源第一;DeepMind Genie 2,一键生成无限虚拟世界
       开发者朋友们大家好: 这里是「RTE开发者日报」,每天和大家一起看新闻、聊八卦。我们的社区编辑团队会整理分享RTE(Real-TimeEngagement)领域内「有话题的新闻」、「有态度的观点」、「有意思的数据」、「有思考的文章」、「有看点的会议」,但内容仅代表编......
  • 公司新来了一个领导,38岁,刚来就把我的工资从1w调到1.5w,领导说,我是唯一的35岁老员工,要互
    刚看到一个网友发帖,说公司新来的38岁领导把他的工资从1万涨到1.5万,我真是又震惊又羡慕。......
  • [USACO1.5] 回文质数 Prime Palindromes
    题目传送门P1217[USACO1.5]回文质数PrimePalindromes题目描述因为151151151既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以......
  • Everything1.5文件搜索工具中文绿色版
    点击上方蓝字关注我前言Everything是一个非常小巧且免费的文件搜索工具,它的搜索速度非常快,简直让人惊讶。即使你的硬盘有上百GB,里面存了几十万个文件,Everything也能在几秒钟内就把NTFS格式的文件都索引好。你只需输入文件名,搜索结果立刻就能显示出来,而且关键词还会被高亮标记出......
  • stable diffusion实践操作-大模型介绍:SD的发展历史,SD1.5和SDXL之间的差别
    大家有没有这样的困惑:在找模型时,老是会出现一些奇怪的标签,像sd1.5、sdxl之类的模型后缀,真让人摸不着头脑,一会儿1.0,一会儿1.5,一会儿XL,完全搞不清楚状况。今天就来给大家好好讲讲,这些让人一头雾水的标签究竟是什么意思。首先,咱们得先了解一些与SD相关的基础知识。Stable......
  • Git入门图文教程(1.5W字40图)--深入浅出、图文并茂
    原文:Git入门图文教程(1.5W字40图)......
  • 新手村Day1.5
    OK.接下来是标识符。在教程里老秦列了几十个关键字,虽然看着多但是熟能生巧嘛。我先用我刚学到的代码解释一下。publicclassCaogao{publicstaticvoidmain(String[]args){System.out.println("Helloworld!");}}在这里main是方法,称之为main方法。类名......
  • 了解AQS(AbstractQueuedSynchronizer)
    AQS(AbstractQueuedSynchronizer)是Java并发包中的一个核心同步器框架,它定义了一套多线程访问共享资源的同步机制。一、AQS的定义AQS,全称AbstractQueuedSynchronizer,即抽象队列同步器,是Java中的一个抽象类。它是构建锁或者其他同步组件的基础框架,通过继承AQS,子类可以实现自己的......