-
Let \(a\) be a nonzero integer and \(n\neq 0\) be a natural number. Then \(\gcd(a,n)=1\) if and only if there exists a multiplication inverse \(b\) such that \(ab\equiv1 (\mod n)\).
Proof: \((\Longrightarrow)\) Let \(\gcd(a,b)=1\), then \(\exists r,s\in \mathbb Z,~s.t.~ar+ns=1\Rightarrow ar=n(-s)+1\). Let \(b=r\), then \(ab=n(-s)+1\equiv 1(\mod n)\).
\((\Longleftarrow)\) Suppose \(\exists b\in\mathbb Z,~s.t.~ab\equiv1(\mod n)\). Then there exists \(p\in\mathbb Z\), such that \(ab=np+1\). Thus \(ab+n(-p)=1\), that is \(\gcd(a,n)=1\). # -
\(a=165,~b=234\). Calculate \(\gcd(a,b)\) and find integers \(r\) and \(s\) such that \(\gcd(a,b)=ar+bs\).
\[\begin{cases} 234=165\times1+69,\\ 165=69\times2+27,\\ 69=27\times2+15,\\ 27=15\times1+12,\\ 15=12\times1+3,\\ 12=3\times4+0 \end{cases} \Rightarrow \gcd(a,b)=3 \]
Solution: Using the Euclidean algorithm:Note that
\[\begin{aligned} 3&=15-12=15-(27-15)=-27+2\times15\\ &=-27+2\times(69-2\times27)=2\times69+(-5)\times27\\ &=2\times69+(-5)\times(165-2\times69)=(-5)\times165+12\times69\\ &=(-5)\times165+12\times(234-165)=(-17)\times165+12\times234. \quad\# \end{aligned} \] -
Show that \(\text{lcm}(a,b)=ab\Longleftrightarrow \gcd(a,b)=1\).
\[m=ap=ap\cdot1=ap(ar+bs)=(ap)(ar)+abps=(bq)(ar)+abps=ab(ps+qr), \]
Proof: \((\Longrightarrow)\) Let \(\text{lcm}(a,b)=ab\), we want to show that \(\gcd(a,b)=1\). Suppose that \(\gcd(a,b)=d>1\), then \(\exists k,l\in\mathbb Z,~s.t.~ a=dk,~b=dl\). It shows that \(dkl\) is a common multiple of \(a\) and \(b\), and \(dkl<d^2kl=ab\). It is contradicts the fact that \(\text{lcm}(a,b)=ab\).
\((\Longleftarrow)\) Let \(\gcd(a,b)=1\), we want to show that \(\text{lcm}(a,b)=ab\). Since \(\gcd(a,b)=1\), \(\exists r,s\in\mathbb Z\), such that \(1=ar+bs\). Suppose that \(m\) is a common multiple of \(a\) and \(b\), we want to show that \(ab\mid m\). Since \(m\) is a common multiple of \(a\) and \(b\), we have \(m=ap=bq,~ p,q\in\mathbb Z\). Note thatthat is \(ab\mid m\). Thus \(\text{lcm}(a,b)=ab\).
-
If \(d=\gcd(a,b)\) and \(m=\text{lcm}(a,b)\). Prove that \(dm=|ab|\).
\[dm=(ar+bs)(ap)=(ar)(ap)+absp=(ar)(bq)+absp=ab(ps+qr). \]
Proof: Without loss of generality, Let \(a,b\in\mathbb Z_+\). Since \(d=\gcd(a,b)\), \(\exists r,s\in\mathbb Z\), such that \(d=ar+bs\). Since \(m=\text{lcm}(a,b)\), it follows that \(\exists p,q\in\mathbb Z\), such that \(m=ap=bq\). Therefore,We want to show that \(ps+qr=1\), i.e. \(\gcd(p,q)=1\). Suppose that \(\gcd(p,q)=d'>1\). Then \(\exists k,l\in\mathbb Z\), such that \(p=kd',q=ld'\). Therefore, \(ap=bq\Longleftrightarrow ak=bl:=m'\) and \(m'<m\). It contradicts that \(m=\text{lcm}(a,b)\). #
-
If \(p\) and \(q\) are distinct primes, the \(\sqrt{pq}\) is not a rational number.
Proof: Suppose that \(\sqrt{pq}=\frac{n}{m}\), \(m,n\in\mathbb N_+\) and \(\gcd(m,n)=1\). Then \(pq=\frac{n^2}{m^2}\Rightarrow n^2=pqm^2\Rightarrow p\mid n^2\Rightarrow p\mid n\). Write \(n=pr,~r\in\mathbb Z\). Then \(p^2r^2=pqm^2\Rightarrow pr^2=qm^2\). So \(p\mid qm^2\). Since \(p\) and \(q\) are distinct primes, we have \(\gcd(p,q)=1\). Thus \(p\mid m^2\Rightarrow p\mid m\). Since \(p\mid m,~p\mid n\) and \(p>1\), it follows that \(\gcd(m,n)\ge p>1\). \(\to\leftarrow\). #