-
Write down the dihedral group \(D_5\).
\[\begin{aligned} &r^2=(13524),~r^3=(14253),~r^4=(15432),\\ &rs=(25)(34),~r^2s=(12)(35),\\ &r^3s=(13)(45),~r^4s=(14)(23). \end{aligned} \]
Solution: \(D_5=\lang r,s\mid s^2=r^5=1,~srs=r^{-1}\rang\), where \(r=(12345),~s=(15)(24)\), i.e. \(D_5=\{\text{id},s,r,r^2,r^3,r^4,rs,r^2s,r^3s,r^4s\}\). We haveThus
\[D_5=\{(1),(12)(35),(12345),(13524),(14253),(15432),(25)(34),(12)(35),(13)(45),(14)(23)\}. \quad \# \] -
Prove that \(D_n\) is a proper subgroup of \(S_n\) for \(n>3\).
Proof: By Thm2.5.2, we have \(D_n\subseteq S_n\) and \(| D_n |=2n,~|S_n|=n!~(n\ge 3)\). If \(D_n\) is a proper subgroup of \(S_n\), then \(n!>2n\Rightarrow (n-1)!>2\Rightarrow n>3\). -
Show that \(r^ks=sr^{-k}\).
Proof: mathematical induction.