首页 > 其他分享 >【Basic Abstract Algebra】Exercises for Section 3.1 — Cosets and Lagrange's Theorem

【Basic Abstract Algebra】Exercises for Section 3.1 — Cosets and Lagrange's Theorem

时间:2024-12-22 14:32:09浏览次数:3  
标签:ab Algebra Cosets cap Lagrange varnothing gH Hg gh

  1. Let \(G\) be a finite group and \(H<G\). If \([G:H]=2\), then \(gH=Hg\).
    Proof: If \([G:H]=2\), then there are only two cosets of \(H\) in \(G\), and one of the cosets is \(H\) itself, i.e.,

    \[G=H\cup gH=H\cup Hg, \]

    where \(H\cap gH=\varnothing,~H\cap Hg=\varnothing\). Clearly, we have \(gH\subseteq Hg\) and \(Hg\subseteq gH\), then \(gH=Hg\). #

  2. Suppose that \([G:H]=2\). If \(a,b\notin H\), show that \(ab\in H\).
    Proof: If \([G:H]=2\), then \(G=H\cup gH\) and \(H\cap gH=\varnothing\). If \(a,b\notin H\), then \(a,b\in gH\), i.e., \(\exists h_1,h_2\in H\), such that \(a=gh_1,~b=gh_2\). Then \(ab=gh_1gh_2\in G\). Assume that \(ab\notin H\), then \(ab\in gH\), i.e., \(\exists h_3\in H\), s.t. \(ab=gh_3\), i,e, \(gh_1gh_2=gh_3\), then \(h_1gh_2=h_3\Rightarrow g=h_1^{-1}h_3h_2^{-1}\in H\Rightarrow gH=H\). Since \(H\cap gH=\varnothing\), we have \(H=gH=\varnothing=G\), it contradicts to the fact that \([G:H]=2\). Thus, \(ab\in H\).

  3. Let \(H,K<G\) and \(|H|=12,|K|=35\). What is \(H\cap K\).
    Solution: Since \(H\cap K<H\) and \(H\cap K<K\), we have \(|H\cap K|\mid |H|\) and \(|H\cap K|\mid |K|\) by the Lagrange's Theorem. Note that \(\gcd(12,35)=1\), so \(|H\cap K|=1\Rightarrow H\cap K=\{\text{Identity}\}\).

标签:ab,Algebra,Cosets,cap,Lagrange,varnothing,gH,Hg,gh
From: https://www.cnblogs.com/sufewsj/p/18622102

相关文章

  • 【Basic Abstract Algebra】Exercises for Section 2.5 — Dihedral groups
    Writedownthedihedralgroup\(D_5\).Solution:\(D_5=\langr,s\mids^2=r^5=1,~srs=r^{-1}\rang\),where\(r=(12345),~s=(15)(24)\),i.e.\(D_5=\{\text{id},s,r,r^2,r^3,r^4,rs,r^2s,r^3s,r^4s\}\).Wehave\[\begin{aligned}&r^2=(13524),~r......
  • 【Basic Abstract Algebra】Exercises for Section 2.4 — Permutation groups
    Computetheinverseof\((465312)\).Solution:Since\((465312)=(42)(41)(43)(45)(46)\),wehave\((465312)^{-1}=(46)(45)(43)(41)(42)=(421356)\).#Let\(G\)beagroupanddefineamap\(\lambda_g:G\toG\)by\(\lambda_g(a)=ga\).Provet......
  • 【Basic Abstract Algebra】Exercises for Section 2.2 — Subgroups
    Let\(H\)beasubgroupof\(G\),if\(g\inG\),showtha\[gHg^{-1}=\{g^{-1}hg\midh\inH\}\]isalsoasubgroupof\(G\).Proof:Since\(e~(\text{identity})\ingHg^{-1}\subseteqG\),\(gHg^{-1}\)isnonempty.Forany\(g^{-1}h_1g,......
  • 【Basic Abstract Algebra】Exercises for Section 1.5
    Let\(a\)beanonzerointegerand\(n\neq0\)beanaturalnumber.Then\(\gcd(a,n)=1\)ifandonlyifthereexistsamultiplicationinverse\(b\)suchthat\(ab\equiv1(\modn)\).Proof:\((\Longrightarrow)\)Let\(\gcd(a,b)=1\),the......
  • Zariski交换代数经典教材Commutative Algebra系列(pdf可复制版)
    Zariski的名字估计学代数几何的人都耳熟能详,先是入门时期的交换代数教材,然后就是深入研究时期随处可见的Zariski拓扑。本帖我们分享的便是著名的Zariski交换代数教材。OscarZariski&PierreSamuel写的交换代数经典教材CommutativeAlgebra,该教材也是学习代数几何的经典......
  • 代数模型(Algebraic Models)---线性规划------+ 案例 + Python源码求解(见文中)
    目录一、代数模型(AlgebraicModels)详解1.1什么是代数模型?1.2代数模型的基本形式1.3安装所需要的Python包--运行下述案例1.4代数模型的应用案例案例1:市场供需平衡模型Python求解代码Python求解结果如下图:案例2:运输问题中的线性规划模型进行数学建模分析1.目标函数2.......
  • 题解:CF1767E Algebra Flash
    可以在cnblogs中阅读。\(m\le40\)的数据范围提示让我们往颜色种类上考虑。由题每次可以跳\(1\)或\(2\)格,即存在一条从\(1\)到\(n\)的路径的充要条件是不存在两个相邻的未激活格。换句话说,对任意两个相邻的格子都必须选择至少一个激活。任意两个,至少一个,这样的条件......
  • Lagrange 插值
    给定\(n\)个横坐标不同的点,求过这\(n\)个点的\(n-1\)次多项式。算法引入这可以直接用高斯消元做,但是时间复杂度\(\mathcalO(n^3)\)不可接受,我们需要优化。我们令\((x_1,y_1),(x_2,y_2),\dots,(x_t,y_t)\)为这些点。考虑构造一个函数\(\ell_j(x)\)满足\[\ell_......
  • Linear Algebra
    线性代数有两大主线第一条主线,是以行列式、矩阵、向量组为工具,研究线性方程组的解法以及解的结构;第二条主线,是以特征值、特征向量、相似理论为依据,研究二次型的标准化.线性方程组核心问题:线性方程组是否一定有解?有解时,有多少个解?如何求出线性方程组的解?当线性方程组的解......
  • linear algebra(3)
    linearequations研究\(n\)个\(n\)元线性方程的解的数量判定。columnpicture将线性方程组视为对列的线性组合,考虑其columnpicture。case1:columnvectorsarelinearindependence此时有唯一解。考虑将这些列向量作为基以后张成的空间,由于其线性无关,所以必定是一个\(......