首页 > 其他分享 >卢卡斯定理

卢卡斯定理

时间:2024-11-03 15:30:39浏览次数:3  
标签:ch int 定理 long 卢卡斯 include bmod

公式

若n,m为整数,p为质数

\[C_{n}^{m}\bmod p= C_{n\bmod p}^{m\bmod p}\times C_{n/p}^{m/p}\bmod p \]

这个式子有什么作用呢,最简单的一种就是求组合数。
有时候n,m过大,可能是p的倍数,这时候n,m对于p没有逆元,自然没办法用费马小定理求逆元。这个时候我们就需要卢卡斯定理了

求组合数步骤

  • 1.求\(C_{n\bmod p}^{m\bmod p}\)
    n,m显然比p小,直接费马小定理求
  • 2.递归求\(C_{n/p}^{m/p}\)

就是这么简单,很好理解。

P3807 【模板】卢卡斯定理/Lucas 定理

模板题:

#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,m,p;
int t;
int pre[100010];

void prev(){//lucas()前面都是常规的费马小定理求组合数
	pre[0]=1;
	for(int i=1;i<=100000;i++){
		pre[i]=(pre[i-1]*i);
		pre[i]%=p;
	}
}

int qpow(int aa,int bb){
	int vl=1,hl=aa;
	hl%=p;
	while(bb){
		if(bb%2){
			vl*=hl;
			vl%=p;
		}
		hl*=hl;
		hl%=p;
		bb/=2;
	}
	return vl;
}

int C(int aa,int bb){
	if(aa<bb) return 0;
	int ans=pre[aa];
	ans*=qpow(pre[aa-bb],p-2);
	ans%=p;
	ans*=qpow(pre[bb],p-2);
	ans%=p;
	return ans;
}

int lucas(int aa,int bb){
	if(bb==0) return 1;
	int val=C(aa%p,bb%p);
	val*=lucas(aa/p,bb/p);
	val%=p;
	return val;
}

signed main(){
	cin>>t;
	while(t--){
		cin>>n>>m>>p;
		prev();
		cout<<lucas(n+m,m)<<endl;
	}
	return 0;
} 

POJ - 3219 Binomial Coefficients

这道题当然可以把模数设成2,直接求,看结果是0还是1,但是这样显得太没水平,也很无聊。
考虑有没有单次O(1)的做法。
我们回到卢卡斯定理的式子:

\[C_{n}^{m}\bmod p= C_{n\bmod p}^{m\bmod p}\times C_{n/p}^{m/p}\bmod p \]

观察前面一项,不难发现\(n\bmod p\)即为n在p进制下的最后一位,后一项递归下去的结果就是把n,m在p进制下的每一位拆出来,分别计算组合数并相乘。

有了这一点以后我们发现p=2,也就是n,m在p进制下的每一位都是0或1,其每一位的组合数只可能是下面几种:

1.\(C_{0}^{0}=1\)
2.\(C_{0}^{1}=0\)
3.\(C_{1}^{0}=1\)
4.\(C_{1}^{1}=1\)

于是我们发现只要出现存在\(C_{0}^{1}\),整体结果为0,否则为1。而\(C_{0}^{1}\)意味着2进制下有一位上n[i]=0,m[i]=1。

如果对于所有i使得m[i]=1,有n[i]=1,则一定有(n-m)&m==0(正好n-m把那些位置减掉了),此时结果为偶数,否则为奇数。

#include<iostream>
using namespace std;
int main(){
    int n,m;
    while(cin>>n>>m){
        if((n-m)&m) cout<<0<<endl;
        else cout<<1<<endl;
    }
}

HDU - 3304 Interesting Yang Yui Triangle

分析思路和上一题差不多。反方向计算不被p整除的数量。此时p进制下n的每一位,必定大于等于m这一位,否则其值为0(这是显然的,比如不可能从两个里选出三个),那么对于n的p进制下的每一位合法的m[i]满足0<=m[i]<=n[i],再乘法原理把每一为的方案数相乘即可

#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;

int main(){
    int p,n;
    int cas=1;
    while(scanf("%d %d", &p, &n)!=EOF){
        if(p==0 && n==0) break;
        int sum=1;
        while(n){
            sum*=n%p+1;
            n/=p;
        }
        printf("Case %d: %04d\n", cas++, sum%10000);
    }
    return 0;
}

HDU - 3037 Saving Beans

题目里说的是不超过m颗松子,发现固定松子个数可以用插板法计算,列出计算公式:

\[\sum_{i=0}^{m} C_{i+n-1}^{n-1} \]

也就是这样一个式子:

\[c(n-1,n-1)+c(n,n-1)+...+c(n+m-1,n-1) \]

(c(i,j)表示\(C_{i}^{j}\))

我们人为凑一个\(c(n-1,n-2)\)上去(反正是0),就会发现可以一直杨辉三角合并下去(\(c(i,j)+c(i,j+1)=c(i+1,j+1)\)),最后得到\(c(n+m,m)\)

#include<iostream>
#define int long long
using namespace std;
int n,m,p;
int t;
int pre[100010];

inline int read(){
	char ch;int x=0;bool f=false;
	for(;!isdigit(ch);ch=getchar())if(ch=='-')f=1;
	for(;isdigit(ch);ch=getchar())x=(x<<1)+(x<<3)+(ch^48);
	if(f) x=-x;
	return x;
}

void pref(int p){
	for(int i=1;i<=p;i++){
		pre[i]=pre[i-1]*i;
		pre[i]%=p;
	}
}

int qpow(int a, int b)//快速幂
{
	int res = 1;
	for(; b; b>>=1, a=a*a%p)
		res = res * (b&1?a:1) % p;
	return res;
}

int C(int aa,int bb){
	if(aa<bb) return 0; 
	int val=pre[aa];
	val*=qpow(pre[aa-bb],p-2);
	val%=p;
	val*=qpow(pre[bb],p-2);
	val%=p;
	return val; 
}

int lucas(int aa,int bb){
	if(bb==0) return 1;
	int val=C(aa%p,bb%p);
	val*=lucas(aa/p,bb/p);
	val%=p;
	return val;
}

int solve(int aa,int bb){
	if(aa<0 || bb<0) return 0;
	int sum=0;
	for(int i=0;i<=bb;i++){
		sum+=lucas(aa,i);
		sum%=p;
		sum+=lucas(aa,i+1);
		sum%=p;
		//sum-=lucas(aa,i+1);
		//sum+=p;
		//sum%=p;
	}
	return sum;
}

signed main(){
	//p=1000000000;
	//cout<<qpow(2,3)<<endl;
	pre[0]=1;
	t=read();
	while(t--){
		cin>>n>>m>>p;
		pref(p);
		cout<<lucas(n+m,m)<<endl;
	}
	return 0;
}

HDU - 5226 Tom and matrix

和上一题差不多的处理思路,每一列凑一个值,最后算出来只剩两项,再减去凑的值(作者一直T,好心人帮忙调调代码T^T)

#include<iostream>
#define int long long
using namespace std;
int a,b,c,d,p;
int pre[100010];

inline int read(){
	char ch;int x=0;bool f=false;
	for(;!isdigit(ch);ch=getchar())if(ch=='-')f=1;
	for(;isdigit(ch);ch=getchar())x=(x<<1)+(x<<3)+(ch^48);
	if(f) x=-x;
	return x;
}

void pref(int p){
	for(int i=1;i<=p;i++){
		pre[i]=pre[i-1]*i;
		pre[i]%=p;
	}
}

int qpow(int aa,int bb){
	int vl=1,hl=aa;
	hl%=p;
	while(bb){
		if(bb%2){
			vl*=hl;
			vl%=p;
		}
		hl*=hl;
		hl%=p;
		bb/=2;
	}
	return vl;
}

int C(int aa,int bb){
	if(aa<bb) return 0;
	if(bb==0) return 1;
	int val=pre[aa];
	val*=qpow(pre[aa-bb],p-2);
	val%=p;
	val*=qpow(pre[bb],p-2);
	val%=p;
	return val; 
}

int lucas(int aa,int bb){
	if(aa<p &&bb<p) return C(aa,bb);
	int val=C(aa%p,bb%p)*lucas(aa/p,bb/p);
	val%=p;
	return val;
}

signed main(){
	pre[0]=1;
	while(cin>>a>>b>>c>>d>>p){
		pref(p);
		if(p==1){
			cout<<0<<"\n";
			continue;
		}
		int ans=0;
		for(int i=b;i<=d;i++){
			ans+=lucas(c,i);
			ans+=lucas(c,i+1);
			ans-=lucas(a,i+1);
			ans+=p;
			ans%=p;
		}
		cout<<ans<<"\n";
	}
	return 0;
}

标签:ch,int,定理,long,卢卡斯,include,bmod
From: https://www.cnblogs.com/wangwenhan/p/18523499

相关文章

  • 常用极限定理
    1.数列运算法则假设\(lim_{x\to\infty}x_n=a\),\(lim_{y\to\infty}y_n=b\)(1)\(lim_{n\to\infty}(x_n+y_n)=lim_{n\to\infty}x_n+lim_{n\to\inftyy_n}=a+b\)(减法,乘法同)(2)\(lim_{n\to\infty}\frac{x_n}{y_n}=\frac{lim_{n\to\infty}x_......
  • 【时间序列分析】平稳时间序列分析——Wold分解定理和延迟算子
    Wold分解定理(这个定理是平稳时间序列分析的理论基石。)对于任意一个离散平稳时间序列,它都可以分解为两个不相关的平稳序列之和,其中一个为确定性的(deterministic),另一个为随机性的(stochastic) xₜ=Vₜ+ξₜ,{V₁}为确定性平稳序列,ξ₁为随机性平稳序列式中:确定性......
  • ACL2 定理证明器的安装
    在Ubuntu 22.04.1安装acl2(“A Computational Logicfor Applicative Common Lisp".)安装环境如下所示:Linuxubun6.8.0-47-generic#47~22.04.1-UbuntuSMPPREEMPT_DYNAMICWedOct216:16:55UTC2x86_64x86_64x86_64GNU/Linux ACL2官网:https://www.cs.utexas......
  • 计量经济学(十五)的理论基础——时间序列分解定理
    时间序列分析是数据科学中的一个重要分支,旨在探索和理解随着时间变化的数据背后的模式和结构。无论是在金融市场预测、经济政策分析、环境监测还是医学研究中,时间序列数据的广泛应用证明了其在预测未来趋势、制定决策和风险管理方面的重要性。然而,时间序列数据的复杂性和多样性使......
  • Neyman因子分解定理
    内容来源数理统计学导论(原书第7版)机械工业出版社因为要计算统计量的pdfpdfpdf,一般情况下,用定义直接验证......
  • 卢卡斯定理学习笔记
    卢卡斯定理对于非负整数\(a\),\(b\)和质数\(p\),有\[C_{a}^{b}\equivC_{a~mod~p}^{b~mod~p}\cdotC_{\lfloor{a/p}\rfloor}^{\lfloor{b/p}\rfloor}~~\left({mod~p}\right)\]证明引理\[\left({1+x}\right)^{p^{\alpha}}\equiv1+x^{p^{\alpha}}~~\left(......
  • Dilworth 定理与二分图部分理论
    给定一个DAG,定义链:一条链内任意两点之间都存在一条路径反链:任意两点都不存在路径Dilworth定理:最长反链\(=\)最小链覆盖。最小链覆盖内一个点只能归属于一条链,但链不一定是连续的。事实上这个还能转化为“选出若干条(一般定义下的)链,但一个点可以在多条链内”,本质相同。......
  • 鞅与停时定理
    鞅与停时定理呆猫不会数学,要证明也是直接抄别人的,不如直接放一篇(详细证明及介绍主要写点,对鞅与停时定理的理解定理与势能函数对于一个随机过程\(\{X_0,X_1,...,X_t\}\),其中\(X_t\)是终止状态,对于构造出的函数,设为\(\varphi(X_i)\),有以下要求:\(E(\varphi(X_{i+1})-\varphi(X......
  • 03-第一中值定理、微积分基本定理、牛莱公式、泰勒公式(转)
    一、第一中值定理如果函数f(x)在闭区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ξξ,使得∫baf(x)dx=f(ξ)(b−a).(a⩽ξ⩽b)∫abf(x)dx=f(ξ)(b−a).(a⩽ξ⩽b)二、微积分基本定理积分上限函数:函数f(x)在区间[a,b]上连续,对于定积分∫xaf(x)dx∫axf(x)dx每一个取值的x......
  • Stolz 定理及其证明
    Stolz定理是处理分式极限的强大工具,其形式类似未定式函数极限的洛必达法则.定理一:设数列\(\{b_n\}\)严格单调递增且趋于\(+\infty\).若\[\lim_{n\rightarrow\infty}\dfrac{a_n-a_{n-1}}{b_{n}-b_{n-1}}=A\]则\(\{a_n/b_n\}\)收敛,且\[\lim_{n\rightarrow\infty}\dfra......