首页 > 其他分享 >03-第一中值定理、微积分基本定理、牛莱公式、泰勒公式(转)

03-第一中值定理、微积分基本定理、牛莱公式、泰勒公式(转)

时间:2024-10-14 09:50:29浏览次数:7  
标签:泰勒 03 函数 公式 定理 dx x0

一、第一中值定理

如果函数f(x)在闭区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ξξ,使得∫baf(x)dx=f(ξ)(b−a).(a⩽ξ⩽b)abf(x)dx=f(ξ)(ba).(aξb)

  

二、微积分基本定理

积分上限函数:函数f(x)在区间[a,b]上连续,对于定积分∫xaf(x)dxaxf(x)dx每一个取值的x都有一个对应的定积分值。记作:Φ(x)=∫xaf(t)dtΦ(x)=axf(t)dt

定理1:

  

定理2(原函数存在定理):

  

三、牛顿—莱布尼兹公式

牛顿-莱布尼兹公式(Newton-Leibniz formula),通常也被称为微积分基本公式,它揭示了定积分与被积函数的原函数或者不定积分之间的联系。

如果F(x)是连续函数f(x)在区间[a,b]上的一个原函数,则:∫baf(x)dx=F(b)−F(a)abf(x)dx=F(b)F(a)

解释:一个连续函数在区间[a,b]上的定积分等于它的任意一个原函数在区间[a,b]上的增量

几何解释:

  

可得:f(b)−f(a)=∑dyf(b)f(a)=dy,由于dy=f′(x)dxdy=f(x)dx,所以 f(b)−f(a)=∑f′(x)dx=∫baf′(x)dxf(b)f(a)=f(x)dx=abf(x)dx

例题:求解∫π20(2cosx+sinx−1)dx0π2(2cosx+sinx1)dx

  

定理3(微积分基本公式)

  

有f(x)∈C[a,b]f(x)C[a,b],且F′(x)=f(x)F(x)=f(x)

  

例题:计算由曲线y2=2x和直线y=x-4所围成的图形的面积

  

   

四、泰勒公式

简单来讲就是用一个多项式函数去无限逼近一个给定的函数(即尽量使多项式函数图像拟合给定的函数图像,如sin x,cos x等函数值的近似计算),注意,逼近的时候一定是从函数图像上的某个点展开。如果一个非常复杂函数,想求其某点的值,直接求无法实现,这时候可以使用泰勒公式去近似的求该值,这是泰勒公式的应用之一。泰勒公式在机器学习中主要应用于梯度迭代。

首先回忆微分 

若f′(x0)f(x0)存在,在x0x0附近有f(x0+Δx)−f(x0)≈f′(x0)Δxf(x0+Δx)f(x0)f(x0)Δx

由于Δx=x−x0Δx=xx0,可以得到f(x)=f(x0)+f′(x0)(x−x0)+o(x−x0)f(x)=f(x0)+f(x0)(xx0)+o(xx0)

近似可得f(x)≈f(x0)+f′(x0)(x−x0)f(x)f(x0)+f(x0)(xx0)

接着再来引出泰勒公式,如果说我们想要以直线来近似的代替一个曲线,如下图所示

  

只用一阶导数看起来有点不准呀,如上图所示,能不能在利用一些呢?答案肯定是可以的,一阶导数只帮我们定位了下一个点是上升还是下降,然后对之后的趋势就很难把控了。

  

那如何定位的更准确一些呢?如果我们再把二阶导数利用上呢?

  

我们可以发现,这样的方式存在精确度不够高,误差不能估计等不足之处。所以,主要的问题就是寻找函数P(x),使得f(x)≈P(x),从而使得误差R(x)=f(x)-P(x)可估计。

  

分析:如果说要f(x)≈P(x),且近似程度要好,Pn(x)应该满足什么条件?

  

由上图就可以引出泰勒公式了

  

Pn(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+⋯+f(n)(x0)n!(x−x0)nPn(x)=f(x0)+f(x0)(xx0)+f(x0)2!(xx0)2++f(n)(x0)n!(xx0)n称为f(x)在点x0关于(x-x0)的n阶泰勒多项式,这个式子只能说是得到的值能够无限的逼近真正的函数值,但是其中还存在一个误差项R(x),也就是说f(x)=R(x)+P(x),这里的误差项称为余项。对于一般的机器学习、深度学习来说,余项本身也用不上在加上其比较复杂,所以在这里就不作解释了。

五、泰勒公式详细解释

多项式逼近如下图所示

  

公式里面的阶数是什么意思呢?

阶数越高增长速度越快。观察可发现,越高次项在越偏右侧影响越大。对于一个复杂函数,给我们的感觉是在当前点,低阶项能更好的描述当前点附近,对于之后的走势就越来越依靠高阶的了。

  

公式里面的阶乘是什么意思呢?

如果把9次的和2次的直接放在一起,那2次的就直接不用玩了呀,它们之间的差距太大了。但是在开始的时候应该是2次的效果更好,之后才是慢慢轮到9次的。

  

 有了阶乘(!)之后,就帮助我们解决了这样的问题

  

如下图所示,使用不同阶的多项式函数来逼近y=sinxy=sinx函数

  

可以看到,阶数越高的函数越能拟合y=sinxy=sinx函数。



如果您觉得阅读本文对您有帮助,请点一下“推荐”按钮,您的“推荐”将是我最大的写作动力!欢迎各位转载,但是未经作者本人同意,转载文章之后必须在文章页面明显位置给出作者和原文连接,否则保留追究法律责任的权利。

本文来自博客园,作者:|旧市拾荒|,转载请注明原文链接:https://www.cnblogs.com/xiaoyh/p/12064509.html

标签:泰勒,03,函数,公式,定理,dx,x0
From: https://www.cnblogs.com/ellabrain/p/18463488

相关文章

  • 读数据工程之道:设计和构建健壮的数据系统03数据工程生命周期(上)
    1. 数据工程生命周期1.1. 数据领域正在经历新数据技术和实践的爆炸式增长,抽象程度和易用性不断提高1.2. 由于技术抽象程度的增加,数据工程师将越来越多地成为数据生命周期工程师,根据数据生命周期管理的原则来进行思考和操作1.3. 数据工程生命周期包括将原始数据成分转化......
  • day03——面向对象高级
    day03——面向对象高级各位同学,前面两天我们已经把面向对象最主要的内容学习完了,剩下的这些语法知识学完,那么Java语法知识就算全齐活了。今天学习的内容同学们学习起来会更轻松一些,有一些语法知识只需要了解一下就可以了,因为实际工作用得并不多。我们先来了解第一个语法知识,内......
  • TMS320 F28034与WirngPi库
    TMS320F28034是一款由TI公司生产的高性能微控制器,主要用于电机控制、电源管理等应用。而WiringPi库是一个用于树莓派GPIO编程的库,与TMS320F28034没有直接关系。如果您想在TMS320F28034上控制三相电机,需要使用TI提供的库和例程。以下是一个简单的C语言示例,用于在TMS320F28034上控制......
  • TMS320 F28034与WirngPi库
    TMS320F28034是一款由TI公司生产的高性能微控制器,主要用于电机控制、电源管理等应用。而WiringPi库是一个用于树莓派GPIO编程的库,与TMS320F28034没有直接关系。如果您想在TMS320F28034上控制三相电机,需要使用TI提供的库和例程。以下是一个简单的C语言示例,用于在TMS320F28034上控制......
  • aardio入门到精通03-数据类型--表 table
    表table:哈希表、有序数组importconsole;//表table:哈希表、有序数组、稀疏数组(了解)/*表(table)是aardio中唯一的复合数据类型。除了非复合的基础数据类型以外,aardio中几乎所有的复合对象都是表,即使是变量的命名空间也是表。表的本质是一个集合(collection),可以用......
  • Error: error:0308010C:digital envelope routines::unsupported
    原因:运行Node.js应用程序时遇到了一个与加密算法相关的错误。具体来说,error:0308010C:digitalenveloperoutines::unsupported错误通常是因为Node.js尝试使用了一个不受支持的加密算法或选项,尤其是在使用某些依赖于OpenSSL的库时。主要是因为nodeJsV17版本发布了OpenSSL3.0......
  • 慧通教育C++测试题 103662--103666(5题)
    103662.数据交换难度:1登录//103662.数据交换难度:1#include<bits/stdc++.h>usingnamespacestd;intm,n,a[105][105],x,y;intmain(){ cin>>m>>n; for(inti=1;i<=m;i++){ for(intj=1;j<=n;j++){ cin>>a[i][j]; } } cin>>x>......
  • Leetcode 1203. 项目管理
    1.题目基本信息1.1.题目描述有n个项目,每个项目或者不属于任何小组,或者属于m个小组之一。group[i]表示第i个项目所属的小组,如果第i个项目不属于任何小组,则group[i]等于-1。项目和小组都是从零开始编号的。可能存在小组不负责任何项目,即没有任何项目属于这个小组。请......
  • 2024-2025-1 学号:20241303 《计算机基础与程序设计》第三周学习总结
    作业信息这个作业属于哪个课程<班级的链接>(如2024-2025-1-计算机基础与程序设计)这个作业要求在哪里<作业要求的链接>(如[2024-2025-1计算机基础与程序设计第三周作业]这个作业的目标<写上具体方面>加入云班课,参考本周学习资源;自学教材;计算机科学概论(第七版)第2章,第3......
  • UE5 猎户座漂浮小岛 03 视觉效果 粒子
    UE5猎户座漂浮小岛03视觉效果粒子1.视觉效果1.1指数级高度雾fog指数高度雾组件0.1、1.4内颜-淡蓝体雾1.2体积光太阳directionallight-强度光强-3颜色-淡蓝光束-遮遮暗-0.018范-100001.3天光天空照亮,泛光,照大地skylight强范1.4后期处理体积1.4.1光......