Stolz 定理是处理分式极限的强大工具,其形式类似未定式函数极限的洛必达法则.
定理一:设数列 \(\{b_n\}\) 严格单调递增且趋于 \(+\infty\). 若
\[\lim_{n\rightarrow \infty}\dfrac{a_n-a_{n-1}}{b_{n}-b_{n-1}}=A \]则 \(\{a_n/b_n\}\) 收敛,且
\[\lim_{n\rightarrow \infty}\dfrac{a_n}{b_n}=A \]
证明:对于任意 \(\varepsilon>0\),存在正整数 \(k\),使得当 \(n\ge k\) 时,有
\[A-\varepsilon<\dfrac{a_n-a_{n-1}}{b_n-b_{n-1}}<A+\varepsilon \]因为 \(\{b_n\}\) 严格单增,所以 \(b_n-b_{n-1}>0\),从而
\[A-\varepsilon<\dfrac{(a_n-a_{n-1})+(a_{n-1}-a_{n-2})+\cdots+(a_k-a_{k-1})}{(b_n-b_{n-1})+(b_{n-1}-b_{n-2})+\cdots+(b_k-b_{k-1})}<A+\varepsilon \]即 \(A-\varepsilon<\dfrac{a_n-a_{k}}{b_n-b_k}<A+\varepsilon\),整理得
\[(A-\varepsilon)(1-\dfrac{b_k}{b_n})+\dfrac{a_k}{b_n}<\dfrac{a_n}{b_n}<(A+\varepsilon)(1-\dfrac{b_k}{b_n})+\dfrac{a_k}{b_n} \]由上(下)极限的保号性,我们有
\[A-\varepsilon\le \liminf_{n\rightarrow\infty}\dfrac{a_n}{b_n}\le\limsup_{n\rightarrow\infty}\dfrac{a_n}{b_n}\le A+\varepsilon \]这一步用了 \(b_n\rightarrow +\infty.\)
根据 \(\varepsilon\) 的任意性, \(\liminf\limits_{n\rightarrow\infty}\dfrac{a_n}{b_n}=\limsup\limits_{n\rightarrow\infty}\dfrac{a_n}{b_n}=A\),即 \(\lim\limits_{n\rightarrow\infty}\dfrac{a_n}{b_n}=A.\)
定理二:设数列 \(\{a_n\},\{b_n\}\) 满足 \(a_n\rightarrow 0,b_n\rightarrow 0\),且 \(\{b_n\}\) 单调递减. 若
\[\lim_{n\rightarrow \infty}\dfrac{a_n-a_{n-1}}{b_{n}-b_{n-1}}=A \]则 \(\{a_n/b_n\}\) 收敛,且
\[\lim_{n\rightarrow \infty}\dfrac{a_n}{b_n}=A \]
证明:对于任意 \(\varepsilon>0\),存在 \(0<\varepsilon'<\varepsilon\) 和正整数 \(k\),使得对于一切 \(n,m\ge k\),都有
\[A-\varepsilon'<\dfrac{a_n-a_m}{b_n-b_m}<A+\varepsilon' \]同时取 \(m\rightarrow \infty\) 的极限,我们有
\[A-\varepsilon<A-\varepsilon'\le\dfrac{a_n}{b_n}\le A+\varepsilon'<A+\varepsilon \]即 \(\lim\limits_{n\rightarrow\infty}\dfrac{a_n}{b_n}=A.\)
补充:利用 Toeplitz 定理证明定理一.
证明:令 \(b_0=0,t_{nk}=\dfrac{b_k-b_{k-1}}{b_n}\),易验证 \(\{t_{nk}\}\) 是特普利茨数表,则
\[\dfrac{a_n}{b_n}=\sum_{k=1}^nt_{nk}\dfrac{a_{k}-a_{k-1}}{b_k-b_{k-1}} \]是特普利茨变换,从而 \(\lim\limits_{n\rightarrow\infty}\dfrac{a_n}{b_n}=A.\)
标签:infty,Stolz,limits,varepsilon,dfrac,定理,证明,lim,rightarrow From: https://www.cnblogs.com/space-of-mistery/p/18459040