首页 > 其他分享 >超前校正系统传递函数分析1

超前校正系统传递函数分析1

时间:2024-10-10 10:48:04浏览次数:12  
标签:超前 校正 frac arctan 传递函数 theta tan omega sin

超前校正系统传递函数的一般形式为
H ( s ) = K ⋅ ( 1 + s ω z ) ( 1 + s ω p ) H(s) = \frac{K \cdot (1 + \frac{s}{\omega_z})}{(1 + \frac{s}{\omega_p})} H(s)=(1+ωp​s​)K⋅(1+ωz​s​)​

其中 ω z , ω p 分别为零极点, K 为比例系数 ω_z,ω_p分别为零极点,K为比例系数 ωz​,ωp​分别为零极点,K为比例系数
其相移为: θ = arctan ⁡ ( ω ω z ) − arctan ⁡ ( ω ω p ) θ = \arctan\left(\frac{\omega}{\omega_z}\right) - \arctan\left(\frac{\omega}{\omega_p}\right) θ=arctan(ωz​ω​)−arctan(ωp​ω​)

当 ω 2 = ω p ⋅ ω z 时候,相移 θ 最大 \omega^2 = \omega_p \cdot \omega_z 时候,相移θ最大 ω2=ωp​⋅ωz​时候,相移θ最大
由此得到:
θ m = arctan ⁡ ( ω c ω z ) − arctan ⁡ ( ω c ω p ) \theta_m = \arctan\left(\frac{\omega_c}{\omega_z}\right) - \arctan\left(\frac{\omega_c}{\omega_p}\right) θm​=arctan(ωz​ωc​​)−arctan(ωp​ωc​​)
θ m = arctan ⁡ ( ω p ω z ) − arctan ⁡ ( ω z ω p ) \theta_m = \arctan\left(\sqrt{\frac{\omega_p}{\omega_z}}\right) - \arctan\left(\sqrt{\frac{\omega_z}{\omega_p}}\right) θm​=arctan(ωz​ωp​​ ​)−arctan(ωp​ωz​​ ​)

其中 θ m 为最大相移动, ω c 为最大相移对应的频率 其中\theta_m为最大相移动,\omega_c为最大相移对应的频率 其中θm​为最大相移动,ωc​为最大相移对应的频率
设 ω p ω z = a 设\sqrt{\frac{\omega_p}{\omega_z}} = a 设ωz​ωp​​ ​=a 有 θ m = a r c t a n ( a ) − a r c t a n ( 1 / a ) θm = arctan(a)-arctan(1/a) θm=arctan(a)−arctan(1/a)
根据公式 tan ⁡ ( a − b ) = tan ⁡ ( a ) − tan ⁡ ( b ) 1 + tan ⁡ ( a ) ⋅ tan ⁡ ( b ) \tan(a-b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a) \cdot \tan(b)} tan(a−b)=1+tan(a)⋅tan(b)tan(a)−tan(b)​
tan ⁡ ( θ m ) = tan ⁡ ( arctan ⁡ ( a ) − arctan ⁡ ( 1 a ) ) = a − 1 a 1 + a ⋅ 1 a = a − 1 a 2 \tan(\theta_m) = \tan\left(\arctan(a) - \arctan\left(\frac{1}{a}\right)\right) = \frac{a - \frac{1}{a}}{1 + a \cdot \frac{1}{a}} = \frac{a - \frac{1}{a}}{2} tan(θm​)=tan(arctan(a)−arctan(a1​))=1+a⋅a1​a−a1​​=2a−a1​​
整理的得到 a 2 − 2 tan ⁡ ( θ m ) a − 1 = 0 a^2 - 2\tan(\theta_m)a - 1 = 0 a2−2tan(θm​)a−1=0

( a − tan ⁡ ( θ m ) ) 2 = 1 + ( tan ⁡ ( θ m ) ) 2 (a - \tan(\theta_m))^2 = 1 + (\tan(\theta_m))^2 (a−tan(θm​))2=1+(tan(θm​))2

a = sin ⁡ ( θ m ) cos ⁡ ( θ m ) + 1 + ( sin ⁡ ( θ m ) cos ⁡ ( θ m ) ) 2 a = \frac{\sin(\theta_m)}{\cos(\theta_m)} + \sqrt{1 + \left(\frac{\sin(\theta_m)}{\cos(\theta_m)}\right)^2} a=cos(θm​)sin(θm​)​+1+(cos(θm​)sin(θm​)​)2
a = sin ⁡ ( θ m ) cos ⁡ ( θ m ) + 1 + ( sin ⁡ ( θ m ) cos ⁡ ( θ m ) ) 2 = sin ⁡ ( θ m ) cos ⁡ ( θ m ) + 1 c o s ( θ m ) a = \frac{\sin(\theta_m)}{\cos(\theta_m)} + \sqrt{1 + \left(\frac{\sin(\theta_m)}{\cos(\theta_m)}\right)^2} = \frac{\sin(\theta_m)}{\cos(\theta_m)} +\frac{1}{cos(\theta_m)} a=cos(θm​)sin(θm​)​+1+(cos(θm​)sin(θm​)​)2 ​=cos(θm​)sin(θm​)​+cos(θm​)1​
a = 1 + sin ⁡ ( θ m ) 1 − sin ⁡ 2 ( θ m ) = 1 + sin ⁡ ( θ m ) ( 1 − sin ⁡ ( θ m ) ) ( 1 + sin ⁡ ( θ m ) ) a = \frac{1 + \sin(\theta_m)}{\sqrt{1 - \sin^2(\theta_m)}} = \frac{1 + \sin(\theta_m)}{\sqrt{(1 - \sin(\theta_m))(1 + \sin(\theta_m))}} a=1−sin2(θm​) ​1+sin(θm​)​=(1−sin(θm​))(1+sin(θm​)) ​1+sin(θm​)​
得到 a = 1 + sin ⁡ ( θ m ) 1 − sin ⁡ ( θ m ) a = \sqrt{\frac{1 + \sin(\theta_m)}{1 - \sin(\theta_m)}} a=1−sin(θm​)1+sin(θm​)​

由 ω c 2 = ω p ⋅ ω z \omega_c^2 = \omega_p \cdot \omega_z ωc2​=ωp​⋅ωz​和 ω p ω z = a \sqrt{\frac{\omega_p}{\omega_z}} = a ωz​ωp​​ ​=a得到:

ω p = ω c 2 ω z = ω c 2 a 2 ω p 得 : \omega_p = \frac{\omega_c^2}{\omega_z} = \frac{\omega_c^2a^2}{\omega_p }得: ωp​=ωz​ωc2​​=ωp​ωc2​a2​得:

ω p = ω c a = ω c 1 + sin ⁡ ( θ m ) 1 − sin ⁡ ( θ m ) \omega_p = \omega_c a = \omega_c \sqrt{\frac{1 + \sin(\theta_m)}{1 - \sin(\theta_m)}} ωp​=ωc​a=ωc​1−sin(θm​)1+sin(θm​)​

由 ω z = ω c 2 / ω p = ω c 2 a 2 ∗ ω z 得到 : 由ω_z = ω_c^2/ω_p = \frac{ ω_c^2}{a^2*ω_z}得到: 由ωz​=ωc2​/ωp​=a2∗ωz​ωc2​​得到:
ω z = ω c a = ω c 1 − sin ⁡ ( θ m ) 1 + sin ⁡ ( θ m ) \omega_z = \omega_c a = \omega_c \sqrt{\frac{1 - \sin(\theta_m)}{1 +\sin(\theta_m)}} ωz​=ωc​a=ωc​1+sin(θm​)1−sin(θm​)​

由上面的两个公式,即可以由需要补偿的 相移幅度 θ m 和补偿点频率 ω c 相移幅度θ_m和补偿点频率ω_c 相移幅度θm​和补偿点频率ωc​得到 补偿极点频率 ω p 和零点频率 ω z 补偿极点频率ω_p和零点频率ω_z 补偿极点频率ωp​和零点频率ωz​

标签:超前,校正,frac,arctan,传递函数,theta,tan,omega,sin
From: https://blog.csdn.net/weixin_42668920/article/details/142733716

相关文章