目录
1. 引言
高数中计算积分思路基本是牛顿莱布尼兹法:
\[I[f]=\int_{a}^{b}f(x)\mathrm{d}x=F(b)-F(a), \]\[F^{\prime}(x)=f(x). \]实际计算中,原函数一般无法求出.给不出解析解,只能求出数值解.
设在区间 [a,b]( 不妨先设 a,b 为有限数 ) 上 ,\(f(x) ≈ P_n (x), P_n (x)\) 为某个较“简单”的函数 , 则显然有
\[\int_a^bf(x)\mathrm{d}x\approx\int_a^bP_n(x)\mathrm{d}x. \]如果\(\operatorname*{max}_{a\leqslant x\leqslant b}|f(x)-P_{n}(x)|\leqslant\varepsilon\),则误差估计:
\[\left|\int_a^bf(x)\mathrm{d}x-\int_a^bP_n(x)\mathrm{d}x\right|\leqslant(b-a)\varepsilon. \]几个常用积分公式及其复合公式
- 中点公式
对f(x),使用\(f(\frac{a+b}{2})\)近似代替.有:
\[\int_a^bf(x)\mathrm{d}x\approx\int_a^bf\left(\frac{a+b}{2}\right)\mathrm{d}x=(b-a)f\left(\frac{a+b}{2}\right). \]误差估计:
\[\int_a^bf(x)\mathrm{d}x-(b-a)f\left(\frac{a+b}{2}\right)=\frac{1}{12}(b-a)^3f''(\xi). \]- 梯形公式
拉格朗日插值多项式\(L_n(x)\):
\[L_n(x)=\sum_{j=0}^ny_jl_j(x)=\sum_{j=0}^ny_j\prod_{\substack{i=0\\i\neq j}}^n\frac{x-x_i}{x_j-x_i}. \]\(n=1\)时,\(L_1(x)=l_0(x)y_0+l_1(x)y_1\),用\(L_1(x)\) 近似代替 f(x) 称为线性插值 , 公式(3.9)称为线性插值多项式或一次插值多项式.即:
\[L_1(x)=\frac{x-x_1}{x_0-x_1}y_0+\frac{x-x_0}{x_1-x_0}y_1. \]\(n=2\)时,\(L_2(x)=l_0(x)y_0+l_1(x)y_1+l_2(x)y_2\),用\(L_2(x)\)近似代替 f(x) 称为二次插值或抛物线插值 , 称式 (3.10) 为二次插值多项式
\[L_2(x)=\frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}y_0+\frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}y_1+\frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}y_2 \]基于\(x=a,x=b\)两节点构造线性插值函数\(L_1(x)\),近似代替原函数\(f(x)\),得到梯形公式.
\[L_1(x)=\frac{x-b}{a-b}f(a)+\frac{x-a}{b-a}f(b) \]\[\begin{aligned} \int_{a}^{b}f(x)\mathrm{d}x& \approx\int_{a}^{b}L_{1}(x)\mathrm{d}x=\int_{a}^{b}\left[{\frac{x-b}{a-b}}f(a)+{\frac{x-a}{b-a}}f(b)\right]\mathrm{d}x \\ &=\frac{1}{2}(b-a)\left[f(a)+f(b)\right]. \end{aligned}\]误差估计:
\[\int_a^bf(x)\mathrm{d}x-\frac{1}{2}(b-a)\left[f(a)+f(b)\right]=-\frac{1}{12}(b-a)^3f''(\xi), \xi\in(a,b) \]- 辛普森 (Simpson) 公式(抛物型公式)
\(\text{若 }f(x)\text{ 用通过节点 }x_0=a, x_1=\frac{a+b}{2}, x_2=b\text{ 的二次插值多项式 }L_2(x)\text{ 代替}\)
\[f(x)\approx L_2(x)=\frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}f(x_0)+\frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}f(x_1)+\frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}f(x_2) \]可以得到积分公式:
\[\int_a^bf(x)\mathrm{d}x\approx\int_a^bL_2(x)\mathrm{d}x=\frac16(b-a)\left[f(a)+4f\left(\frac{a+b}2\right)+f(b)\right]. \]误差估计:
\[\int_a^bf(x)\mathrm dx-\frac{1}{6}(b-a)\left[f(a)+4f\left(\frac{a+b}{2}\right)+f(b)\right]=-\frac{(b-a)^5}{2880}f^{(4)}(\xi),\quad\xi\in(a,b). \] 标签:bf,数值积分,frac,int,微分,right,left,计算方法,mathrm From: https://www.cnblogs.com/aksoam/p/18332123