首页 > 其他分享 >常数变易法求解非齐次线性微分方程

常数变易法求解非齐次线性微分方程

时间:2024-06-18 23:32:39浏览次数:18  
标签:begin end 2x sin vmatrix 齐次 微分方程 变易 frac

目录

常数变易法求解一阶非齐次线性微分方程

对于一阶非齐次线性微分方程

\[y' + p(x)y = q(x) \]

先用分离变量法求解对应的齐次方程

\[\begin{aligned} & y' + p(x)y = 0 \\ \Rightarrow & y = C e^{- \int p(x)dx} \end{aligned} \]

将 \(C\) 改为 \(C(x)\),令 \(y = C(x) e^{- \int p(x)dx}\),代入原非齐次方程得

\[\begin{aligned} & \left[ C'(x) e^{- \int p(x)dx} - p(x) e^{- \int p(x)dx} \right] + p(x) e^{- \int p(x)dx} = q(x) \\ \Rightarrow & C'(x) e^{- \int p(x)dx} = q(x) \\ \Rightarrow & C(x) = \int q(x) e^{\int p(x)dx} dx + C \end{aligned} \]

所以一阶非齐次线性微分方程的通解为

\[y = e^{- \int p(x)dx} \left( \int q(x) e^{\int p(x)dx} dx + C \right) \]

常数变易法求解二阶非齐次线性微分方程

对于二阶非齐次线性微分方程

\[y''+p(x)y'+q(x)y=f(x) \]

设对应齐次方程的两个线性无关解为 \(y_1,y_2\),则其通解为

\[y = C_1 y_1 + C_2 y_2(C_1,C_2为任意常数) \]

因此可设非齐次方程的特解为

\[y^* = C_1(x) y_1 + C_2(x) y_2 \]

为确定函数 \(C_1(x),C_2(x)\),可对上式进行求导得

\[\begin{aligned} (y^*)' &= [C_1'(x) y_1 + C_1(x) y_1'] + [C_2'(x) y_2 + C_2(x) y_2'] \\ &= [C_1'(x) y_1 + C_2'(x) y_2] + [C_1(x) y_1' + C_2(x) y_2'] \end{aligned} \]

接下来对上式再进行一次求导,不过在此之前,为了使得 \(y''\) 中不含 \(C_1''(x),C_2''(x)\),可令 \(C_1'(x) y_1 + C_2'(x) y_2 = 0\),现在对上式求导得

\[\begin{aligned} (y^*)'' &= [C_1(x) y_1' + C_2(x) y_2']' \\ &= [C_1'(x) y_1' + C_1(x) y_1''] + [C_2'(x) y_2' + C_2(x) y_2''] \end{aligned} \]

将 \(y,y',y''\) 代入原非齐次方程得

\[\begin{aligned} & [C_1'(x) y_1' + C_1(x) y_1''] + [C_2'(x) y_2' + C_2(x) y_2''] + p(x)[C_1(x) y_1' + C_2(x) y_2'] + q(x) [C_1(x) y_1 + C_2(x) y_2] = f(x) \\ \Rightarrow & C_1(x) [y_1''+p(x)y_1'+q(x)y_1] + C_2(x) [y_2''+p(x)y_2'+q(x)y_2] + [C_1'(x) y_1' + C_2'(x) y_2'] = f(x) \\ \Rightarrow & C_1'(x) y_1' + C_2'(x) y_2' = f(x) \end{aligned} \]

联立两个方程

\[\begin{cases} C_1'(x) y_1 + C_2'(x) y_2 = 0 \\ C_1'(x) y_1' + C_2'(x) y_2' = f(x) \\ \end{cases} \]

即可求得 \(C_1'(x),C_2'(x)\),最后进行积分得到 \(C_1(x),C_2(x)\)。

【注】常数变易法在同济七版高等数学中有介绍,适用于求解任意二阶非齐次常系数线性微分方程(提醒:在考研范围内,非齐次项的形式是固定的,而非任意形式)。

例题

【例 1】求解微分方程 \(y'' + 3y' + 2y = x^2\)

【解】先求对应齐次通解:\(y = C_1 e^{-x} + C_2 e^{-2x}\),所以 \(y_1 = e^{-x}, y_2 = e^{-2x}\),解方程组

\[\begin{cases} C_1'(x) e^{-x} + C_2'(x) e^{-2x} = 0 \\ -C_1'(x) e^{-x} - 2C_2'(x) e^{-2x} = x^2 \\ \end{cases} \]

可求得

\[\begin{cases} C_1'(x) = \begin{vmatrix} 0 & e^{-2x} \\ x^2 & -2e^{-2x} \end{vmatrix} / \begin{vmatrix} e^{-x} & e^{-2x} \\ -e^{-x} & -2e^{-2x} \end{vmatrix} = \frac{-x^2e^{-2x}}{-e^{-3x}} = x^2 e^x\\ C_2'(x) = \begin{vmatrix} e^{-x} & 0 \\ -e^{-x} & x^2 \end{vmatrix} / \begin{vmatrix} e^{-x} & e^{-2x} \\ -e^{-x} & -2e^{-2x} \end{vmatrix} = \frac{x^2e^{-x}}{-e^{-3x}} = -x^2 e^{2x} \end{cases} \]

于是

\[\begin{cases} C_1(x) = (x^2-2x+2) e^x\\ C_2(x) = -\frac{1}{4}(2x^2 - 2x + 1) e^{2x} \end{cases} \]

所以特解为

\[\begin{aligned} y^* &= C_1(x) y_1 + C_2(x) y_2 \\ &= (x^2-2x+2) - \frac{1}{4}(2x^2 - 2x + 1) \\ &= \frac{1}{2}x^2 - \frac{3}{2}x + \frac{7}{4} \end{aligned} \]

【例 2】求解微分方程 \(y'' + 3y' + 2y = \sin x\)

【解】先求对应齐次通解:\(y = C_1 e^{-x} + C_2 e^{-2x}\),所以 \(y_1 = e^{-x}, y_2 = e^{-2x}\),解方程组

\[\begin{cases} C_1'(x) e^{-x} + C_2'(x) e^{-2x} = 0 \\ -C_1'(x) e^{-x} - 2C_2'(x) e^{-2x} = \sin x \\ \end{cases} \]

可求得

\[\begin{cases} C_1'(x) = \begin{vmatrix} 0 & e^{-2x} \\ \sin x & -2e^{-2x} \end{vmatrix} / \begin{vmatrix} e^{-x} & e^{-2x} \\ -e^{-x} & -2e^{-2x} \end{vmatrix} = \frac{e^{-2x}\sin x}{-e^{-3x}} = e^x \sin x\\ C_2'(x) = \begin{vmatrix} e^{-x} & 0 \\ -e^{-x} & \sin x \end{vmatrix} / \begin{vmatrix} e^{-x} & e^{-2x} \\ -e^{-x} & -2e^{-2x} \end{vmatrix} = \frac{e^{-x}\sin x}{-e^{-3x}} = -e^{2x} \sin x \end{cases} \]

于是

\[\begin{cases} C_1(x) = \frac{1}{2} (\sin x - \cos x) e^x\\ C_2(x) = -\frac{4}{5}(\frac{1}{2} \sin x - \frac{1}{4} \cos x) e^{2x} \end{cases} \]

所以特解为

\[\begin{aligned} y^* &= C_1(x) y_1 + C_2(x) y_2 \\ &= \frac{1}{2} (\sin x - \cos x) -\frac{4}{5}(\frac{1}{2} \sin x - \frac{1}{4} \cos x) \\ &= \frac{1}{10} \sin x - \frac{3}{10} \cos x \end{aligned} \]

【例 3】求解微分方程 \(y'' + 4y = \cos 2x\)

【解】先求对应齐次通解:\(y = C_1 \cos 2x + C_2 \sin 2x\),所以 \(y_1 = \cos 2x, y_2 = \sin 2x\),解方程组

\[\begin{cases} C_1'(x) \cos 2x + C_2'(x) \sin 2x = 0 \\ -2C_1'(x) \sin 2x + 2C_2'(x) \cos 2x = \cos 2x \\ \end{cases} \]

可求得

\[\begin{cases} C_1'(x) = \begin{vmatrix} 0 & \sin 2x \\ \cos 2x & 2\cos 2x \end{vmatrix} / \begin{vmatrix} \cos 2x & \sin 2x \\ -2\sin 2x & 2\cos 2x \end{vmatrix} = -\frac{\sin 2x \cos 2x}{2\cos^2 2x + 2\sin^2 2x} = -\frac{1}{4} \sin 4x \\ C_2'(x) = \begin{vmatrix} \cos 2x & 0 \\ -2\sin 2x & \cos 2x \end{vmatrix} / \begin{vmatrix} \cos 2x & \sin 2x \\ -2\sin 2x & 2\cos 2x \end{vmatrix} = \frac{\cos^2 2x}{2\cos^2 2x + 2\sin^2 2x} = \frac{1}{4} (\cos 4x + 1) \end{cases} \]

于是

\[\begin{cases} C_1(x) = \frac{1}{16} \cos 4x \\ C_2(x) = \frac{1}{4} x + \frac{1}{16}\sin 4x \end{cases} \]

所以特解为

\[\begin{aligned} y^* &= C_1(x) y_1 + C_2(x) y_2 \\ &= \frac{1}{16} \cos 4x \cos 2x + (\frac{1}{4} x + \frac{1}{16}\sin 4x) \sin 2x \\ &= \frac{1}{16} (\cos 4x \cos 2x + \sin 4x \sin 2x) + \frac{1}{4} x \sin 2x \\ &= \frac{1}{16} \cos 2x + \frac{1}{4} x \sin 2x \end{aligned} \]

由于方程的通解为

\[\begin{aligned} y &= (C_1 + \frac{1}{16}) \cos 2x + C_2 \sin 2x + \frac{1}{4} x \sin 2x \\ &= C_3 \cos 2x + C_2 \sin 2x + \frac{1}{4} x \sin 2x \end{aligned} \]

所以特解应为

\[y^* = \frac{1}{4} x \sin 2x \]

【例 4】求解微分方程 \(y'' - 2y' + y = xe^x\)

【解】先求对应齐次通解:\(y = C_1 e^{x} + C_2 xe^{x}\),所以 \(y_1 = e^{x}, y_2 = xe^{x}\),解方程组

\[\begin{cases} C_1'(x) e^{x} + C_2'(x) xe^{x} = 0 \\ C_1'(x) e^{x} + C_2'(x) (x+1)e^{x} = xe^x \\ \end{cases} \]

可求得

\[\begin{cases} C_1'(x) = \begin{vmatrix} 0 & xe^{x} \\ xe^{x} & (x+1)e^{x} \end{vmatrix} / \begin{vmatrix} e^{x} & xe^{x} \\ e^{x} & (x+1)e^{x} \end{vmatrix} = \frac{-x^2e^{2x}}{e^{2x}} = -x^2 \\ C_2'(x) = \begin{vmatrix} e^{x} & 0 \\ e^{x} & xe^{x} \end{vmatrix} / \begin{vmatrix} e^{x} & xe^{x} \\ e^{x} & (x+1)e^{x} \end{vmatrix} = \frac{xe^{2x}}{e^{2x}} = x \end{cases} \]

于是

\[\begin{cases} C_1(x) = -\frac{1}{3} x^3 \\ C_2(x) = \frac{1}{2} x^2 \end{cases} \]

所以特解为

\[\begin{aligned} y^* &= C_1(x) y_1 + C_2(x) y_2 \\ &= -\frac{1}{3} x^3 \cdot e^{x} + \frac{1}{2} x^2 \cdot xe^{x} \\ &= \frac{1}{6} x^3 e^{x} \end{aligned} \]

标签:begin,end,2x,sin,vmatrix,齐次,微分方程,变易,frac
From: https://www.cnblogs.com/Mount256/p/18255406

相关文章

  • 基于Itô扩散过程的交易策略偏微分方程matlab求解与仿真
    目录1.程序功能描述2.测试软件版本以及运行结果展示3.核心程序4.本算法原理5.完整程序1.程序功能描述    基于Itô扩散过程的交易策略偏微分方程,提出了一种确定Itô扩散过程。通过根据的第一次通过时间来确定问题在这个过程中,我们推导出交易长度的分布函数和......
  • Python俄罗斯方块可操纵卷积分类 | 稀疏辨识算法 | 微分方程神经求解器
    ......
  • 非齐次线性最小二乘
    非齐次线性最小二乘问题是线性代数中一种重要的优化问题,用于寻找一组最接近给定数据的线性模型参数。当模型预测值与实际观测值之间存在误差,且模型是线性的,但观测值并不完全满足模型时,就使用非齐次线性最小二乘法。其目标是最小化模型预测值与实际观测值之间的残差平方和。......
  • 常微分方程
    虽然这部分在笔记本上只有短短三页,但总是记不清公式,所以写下来,随时参考规定\(\int{p(x)\mathrm{d}x}\)不含\(C\)一阶微分方程一、变量分离方程\[\frac{\mathrmdy}{\mathrmdx}=\frac{X(x)}{Y(y)}\]解:移项积分\(\int{Y(y)}\mathrm{d}y=\int{X(x)}\mathrm{d}x+C\)二、......
  • 为什么在相机进行投影变换前要进行齐次操作?
    https://blog.csdn.net/zhuiqiuzhuoyue583/article/details/95230246#:~:text=这就是引入齐次坐标的作用,把各种变换都统一了起来,即把缩放,旋转,平移等变换都统一起来,都表示成一连串的矩阵相乘的形式。保证了形式上的线性一致性。简短的解释:齐次坐标就是将一个原本是n维的向量......
  • matlab练习程序(线性常微分方程组矩阵解)
    之前有通过ode和simulink解线性常微分方程组。除了上面两种方法,线性常微分方程组还可以通过矩阵的方法求解。比如下面这个之前使用的方程组:x''=x'-x+y'-z'y''=y'-y-x'z''=z'-z+x'可以写成下面矩阵形式: 设这个矩阵为A,那么解可以表示为如下形式:可以直......
  • FFT 优化常系数齐次线性递推式
    \(f_i\)序列满足\(f_i=\displaystyle\sum_{j=1}^kc_jf_{i-j}\)。\(k\le32000,n\le10^9\)。已知\(f_1\simf_k\)和\(c_1\simc_k\)。求\(f_n\)。这称为"\(k\)次齐次常系数线性递推式"。如果\(k\)比较小,可以用矩阵快速幂;但\(k\)太大,一次矩阵乘法都很慢。我们可......
  • EG25H4偏微分方程的解决方案
    EG25H4–CA2–偏微分方程的解决方案学生应独立准备解决指定问题的方案问题。提交的稿件,连同抄袭封面,应上传至2024年4月19日(星期五)下午5点(英国夏令时)前抵达MyAberdeen。请注意在截止日期后收到的未经授权的提交文件将受到逾期罚款,因为根据大学关于未经授权逾期提交的处罚政策课程。......
  • 文献学习-31-内窥镜摄像机运动模仿学习的深度齐次变换预测
    DeepHomographyPredictionforEndoscopicCameraMotionImitationLearningAuthors: MartinHuber,SébastienOurselin, ChristosBergeles, andTomVercauterenKeywords:Computervision·Roboticsurgery·ImitationlearningSource:  M......
  • 微分方程数值解法_常微分方程篇
    一阶常微分方程初值问题问题的适定性(well-posedness):(數學系的角度)•存在性:问题有解•唯一性:解是唯一的•稳定性:这个唯一解连续地依赖于问题中所给的数据(即初值、边值等)初值问题的求解Euler法區別(極限)入門要點:極限、中值定理==......