首页 > 其他分享 >二元一次不定方程(Exgcd)(更方便的解法)

二元一次不定方程(Exgcd)(更方便的解法)

时间:2024-07-22 16:08:27浏览次数:5  
标签:方程 二元 dfrac ll Exgcd Delta aligned bmod 解法

扩展欧几里得算法(Exgcd)

裴蜀定理

对于任意一组整数 \(a,b\),存在一组整数 \(x,y\),满足 \(ax+by=\gcd(a,b)\)。

Proof:

考虑数学归纳法。

当 \(b=0\) 时,由于 \(\gcd(a,0)=a\),则对于 \(ax+0y=a\) 这个不定方程,\(x=1\),\(y\) 取任意整数。

假设存在一组整数 \(x,y\),满足 $bx+(a\bmod b)y=\gcd(b,a\bmod b)=\gcd(a,b) $。

那么接下来证明也存在一组整数 \(x',y'\) 满足 \(ax'+by'=\gcd(a,b)\)。

\[\begin{aligned} bx+(a\bmod b)y &= bx+(a-b\lfloor\dfrac{a}{b}\rfloor)y\\ &= bx+ay-b\lfloor\dfrac{a}{b}\rfloor y\\ &= ay+b(x-\lfloor\dfrac{a}{b}\rfloor y) \end{aligned} \]

当 \(x'=y,y'=x-\lfloor\dfrac{a}{b}\rfloor y\) 时满足条件。

那么利用辗转相除法进行递归,总能递归到 \(b=0\) 的情况。命题得证。

Exgcd

求关于 \(x,y\) 的方程 \(ax+by=c\) 的整数解。

设 \(d=\gcd(a,b)\),方程有整数解的充要条件是 \(d\mid c\)。

Proof:

设 \(a=k_1d,b=k_2d\),则有 \(k_1dx+k_2dy=c \Rightarrow k_1x+k_2y=\dfrac{c}{d}\)。

先证必要性: 由于 \(\dfrac{c}{d}\) 必须为整数,则 \(d \mid c\)。

再证充分性:上式中,\(k_1\perp k_2\),则方程 \(k_1x'+k_2y'=1\) 一定有整数解。由于 \(\dfrac{c}{d} \in\mathbb{Z}\),那么原方程也一定有整数解。

先将方程化简,两边同除以 \(d\)。此时 \(a,b\) 互质。

为了方便表述,下面提到的方程都是化简后的方程。

那么我们可以先利用裴蜀定理求出 \(ax'+by'=1\) 的一组特解 \(x',y'\),从而求出原方程的一组特解 \(x_0=cx’,y_0=cy'\)。

考虑如何求出通解。

让 \(x\) 加上一个数,那么 \(y\) 就要减去一个数。设这两个数为 \(\Delta_x,\Delta_y\),则有:

\[\begin{aligned} a(x+\Delta_x)+b(y-\Delta_y) &= c\\ ax+a\Delta_x+by-b\Delta_y &= c\\ a\Delta_x-b\Delta_y&=0\\ a\Delta_x &= b\Delta_y \\ \dfrac{a}{b} &= \dfrac{\Delta_y}{\Delta_x} \end{aligned} \]

由于 \(a,b\) 互质,则 \(\dfrac{a}{b}\) 为最简整数比,则有 \(a \mid \Delta_y\) 且 \(\ b\mid \Delta_x\)。

由于 \(\Delta_x,\Delta_y \in \mathbb{Z}\),则 \(\Delta_x\) 最小取到 \(b\),\(\Delta_y\) 最小取到 \(a\)。

通解即为:

\[\begin{cases} x=x_0+kb\\ y=y_0+ka\\ \end{cases} (k\in \mathbb{Z}) \]

代回原方程,可以消掉 \(kb,ka\)。

接下来考虑,当存在正整数解时,如何求出最小正整数解与正整数解的个数。

对 \(x\) 的通解进行变形,求 \(x\) 的最小正整数解 \(x_1\):

\[\begin{aligned} x_1 \bmod b &= (x_0+kb) \bmod b\\ x_1 \bmod b &= x_0 \bmod b\\ x_1&=(((x_0-1) \bmod b)+b)\bmod b+1 \end{aligned} \]

先减一是为了避免 $x_0 \bmod a $ 一开始就为 \(0\) 的情况,从而保证 \(x_1>0\)。

易得,当 \(x\) 增大时,\(y\) 减小。当 \(x\) 取 \(x_1\) 时,\(y\) 取到最大正整数解 \(y_2\)。

同理,求出 \(y\) 的最小正整数解 \(y_1\),当 \(y\) 取 \(y_1\) 时,\(x\) 取到最大正整数解 \(x_2\)。

由通解公式可得,\(x\) 每两个整数解之间相差 \(b\),\(y\) 每两个整数解之间相差 \(a\)。

正整数解的个数即为 \(\dfrac{x_2-x_1}{b}+1\) 或 \(\dfrac{y_2-y_1}{a}+1\)。

Ex.1 【模板】二元一次不定方程 (exgcd)

根据上面的分析,套用公式即可。

ll T,A,B,C,x,y,d,x1,x2,y1,y2,cnt; 

ll GetX(ll Y){return (C-B*Y)/A;}

ll GetY(ll X){return (C-A*X)/B;}

ll Exgcd(ll a,ll b,ll &x,ll &y){
	if(b==0) return x=1,y=0,a;
	ll res=Exgcd(b,a%b,x,y);
	ll z=x;
	x=y;
	y=z-(a/b)*y;
	return res;
}

void Solve(){
	read(A),read(B),read(C);
	d=Exgcd(A,B,x,y);
	if(C%d) return puts("-1"),void();
	A/=d,B/=d,C/=d;
	x*=C,y*=C;
	x1=((x-1)%B+B)%B+1;
	y2=GetY(x1);
	y1=((y-1)%A+A)%A+1;
	x2=GetX(y1);
	cnt=(x2-x1)/B+1;
	if(y2<=0) printf("%lld %lld\n",x1,y1);
	else printf("%lld %lld %lld %lld %lld\n",cnt,x1,y1,x2,y2);
}

Ex.2 [NOIP2012 提高组] 同余方程

对式子进行变形:

\[\begin{aligned} ax &\equiv 1 \pmod{b}\\ ax+by &= 1 \end{aligned} \]

利用 Exgcd 求解即可。

这是非常常用的变形技巧,也是当 \(a,b\) 互质但 \(b\) 不是质数时求逆元的方法。

Ex.3 青蛙的约会

设跳跃 \(k\) 次后两青蛙相遇,则可列出方程:

\[\begin{aligned} x+kn &\equiv y+km &\pmod{L}\\ (x-y)+k(n-m) &\equiv 0 &\pmod{L}\\ (x-y)+k(n-m) &= pL\\ k(n-m)-pL&=y-x\\ kS-pL&=C \end{aligned} \]

其中 \(S,L,C\) 为常数。

把 \(k,p\) 看作未知数,利用 Exgcd 求 \(k\) 的最小正整数解即可。

标签:方程,二元,dfrac,ll,Exgcd,Delta,aligned,bmod,解法
From: https://www.cnblogs.com/XP3301Pipi/p/18312749

相关文章

  • 推式子——拓展欧几里德算法exgcd
    试求方程\(ax+by=\gcd(a,b)\)的一组整数解,其中\(a\)和\(b\)是给定的数提前准备好一个式子:辗转相除法\[\gcd(a,b)=\gcd(b,a\bmodb)\]同时我们可以注意到,\(\bmod\)的等价版本:\[a\bmodb=a-b\lfloor\frac{a}{b}\rfloor\]开始推式子首先考虑\(b=0\)的情况,因为......
  • 将三个经过训练的二元分类模型组合成 keras 中的单个多分类模型
    我有三个经过训练的二元分类模型,它们在输出层使用sigmoid激活进行训练。第一个模型返回从0到1的概率标量,以检查图像是否为数字零或不是。第二个模型返回从0到1的概率标量来检查图像是否是数字ONE或否。第三个模型返......
  • exgcd
    裴蜀定理对于任意整数\(a,b\)都存在整数\(x,y\),使得\(ax+by=gcd(a,b)\)扩展欧几里得算法(exgcd)设整数\(a,b,x,y\)满足\(ax+by=gcd(a,b)\)若\(b=0\),则\(x=1\),\(y\)取任意整数若\(b>0\)\[ax+by=gcd(a,b)\]\[=gcd(b,a\mod\b)\]\[=bx_0+(a\mod\b)y_0\]\[=bx_0+(a-......
  • php中遇到new $a($b)的解法 imagick类的利用绕过open_basedir
    今天做题遇到一个新的知识点,接下来回顾下。源码<?phperror_reporting(0);ini_set('open_basedir',__DIR__.":/tmp");define("FUNC_LIST",get_defined_functions());classfumo_backdoor{public$path=null;public$argv=null;publ......
  • 扩展欧几里得算法(exGcd)
    扩展欧几里得算法(ExtendedEuclideanalgorithm,EXGCD),常用于求\(ax+by=c\)的一组可行解。过程设\(ax_1+by_1=\gcd(a,b)\)\(bx_2+(a\modb)y_2=gcd(b,a\modb)\)由欧几里得算法:\(\gcd(a,b)=gcd(b,a\modb)\)所以:\(ax_1+by_1=bx_2+(a\modb)y_2\)又因为:\(a\mod......
  • [蓝桥杯 2018 省 B] 递增三元组(两种解法)
    [蓝桥杯2018省B]递增三元组题目描述给定三个整数数组A=[A1......
  • MATLAB程序复现-基于合作博弈与改进理想解法的低碳化电网运营水平综合评价
    摘要:在我国能源领域“双碳”目标的引领下,电网呈现低碳化发展趋势,因此需要构建更加全面的综合评价体系进行低碳化电网运营水平的综合评价。提出了一种基于合作博弈与改进理想解法的低碳化电网运营水平综合评价方法。首先,考虑低碳化电网运营的影响因素,提出了包括安全与可靠性、经......
  • P9963前缀和_数学推导解法
    P9963前缀和数学推导解法\(\operatorname{E}{\sum\limits_{i=1}^n[l\ley_i\ler]}\\=\sum\limits_{i=1}^n\operatorname{E}[l\ley_i\ler]\\=\sum\limits_{i=1}^n\operatorname{E}[l\le\sum\limits_{j=1}^ix_j\ler]\\=\sum\limits_{i=1}^n\operatorna......
  • 算法奇论——LIS 与打牌有关?看 LIS 的二分搜索解法
    《算法奇论》的第一篇文章啦~~《算法奇论》是作者开创的新的一个专栏,专门收录各种有关于计算机算法学的奇闻异事,欢迎阅读。由于本人仅14岁,知识、经验可能不足,再加上本文进度比较赶,本文可能有勘误或错别字、拼写错误,还请发现者在评论区指出,作者一定在看到评论后第一时间更正,谢......
  • C++ //练习 14.44 编写一个简单的桌面计算器使其能处理二元运算。
    C++Primer(第5版)练习14.44练习14.44编写一个简单的桌面计算器使其能处理二元运算。环境:LinuxUbuntu(云服务器)工具:vim 代码块/************************************************************************* >FileName:ex14.44.cpp >Author: >Mail: >C......