端点效应难在放缩语言的叙述
已知函数\(f(x)=\ln x+ax^2-x+a+1\),若\(f(x)\leq e^x\),求\(a\)取值范围
解
\(\ln x+ax^2-x+a+1-e^x\leq 0\)
记\(g(x)=\ln x+ax^2-x+a+1-e^x,g(1)=2a-e\leq 0\)
则一定有\(a\leq \dfrac{e}{2}\)
现说明\(a\leq \dfrac{e}{2}\)是合题的
\(g(x)=\ln x+ax^2-x+a+1-e^x=\ln x+a(x^2+1)-x+1-e^x\leq \ln x+\dfrac{e}{2}(x^2+1)-x+1-e^x\)
记\(\varphi(x)=\ln x+\dfrac{e}{2}(x^2+1)-x+1-e^x,\varphi^{\prime}(x)=\dfrac{1}{x}+ex-1-e^x\)
当\(x\geq 1\)时,\(\varphi^{\prime}(x)\leq \dfrac{1}{x}+ex-1-ex=\dfrac{1}{x}-1\leq 0\)
当\(x\in(0,1)\)时,\(\varphi^{\prime\prime}(x)=-\dfrac{1}{x^2}+e-e^x<-\dfrac{1}{x^2}-ex+e<-2\sqrt{\dfrac{e}{x}}+e<-2\sqrt{e}+e<0\)
从而\(\varphi^{\prime}(x)\)单调递减,而\(\varphi^{\prime}(1)=0\),
则当\(x\in(0,1)\),\(\varphi(x)>0\)
从而\(\varphi(x)\leq \varphi(1)=0\)
则\(g(x)\leq \varphi(x)\leq \varphi(1)=0\)
得证.
标签:prime,导数,ln,dfrac,每日,varphi,leq,65,ax From: https://www.cnblogs.com/manxinwu/p/18017547