1. 导数简介
1.1 导数的定义
当函数 \(y=f(x)\) 的自变量 \(x\) 在一点 \(x_0\) 上产生一个增量 \(\Delta x\) 时,函数输出值的增量 \(\Delta y\) 与自变量增量 \(\Delta x\) 的比值在 \(\Delta x\) 趋于 \(0\) 时的极限 \(a\) 如果存在,\(a\) 即为在 \(x_0\) 处的导数,记作\(f^{'}(x_0)\) 或 \(\frac{df(x)}{dx}\)。
1.2 导数的概念
称函数 \(f(x)\) 在 \(x=x_0\) 处的瞬时变化率 \(\lim\limits_{\Delta x \to 0}\frac{\Delta y}{\Delta x}=\lim\limits_{\Delta x \to 0}\frac{f(x_0+\Delta x)-f(x)}{\Delta x}\) 为函数 \(f(x)\) 在 \(x=x_0\) 处的导数,记作 \(f^{'}(x_0)\) 或 \(\frac{df(x)}{dx}\) 或 \(y^{'}|_{x=x_0}\),即 \(f^{'}(x_0)=\lim\limits_{\Delta x \to 0}\frac{\Delta y}{\Delta x}=\lim\limits_{\Delta x \to 0}\frac{f(x_0+\Delta x)-f(x)}{\Delta x}\)
1.3 导数的几何意义
函数 \(y=f(x)\) 在 \(x=x_0\) 处的导数 \(f^{'}(x_0)\) 就是曲线在点 \(P(x_0,y_0)\) 处的切线的斜率,即 \(k=f^{'}(x_0)\)。
2. 基本初等函数求导
- \(f(x)=c\Rightarrow f^{'}(x)=0\)
证明:
\[\begin{aligned} f^{'}(x)&=\lim\limits_{\Delta x \to 0}\frac{f(x_0+\Delta x)-f(x)}{\Delta x}\\ &=\lim\limits_{\Delta x \to 0}\frac{c-c}{\Delta x}\\ &= 0 \end{aligned} \]- \(f(x)=x^a\Rightarrow f^{'}(x)=ax^{a-1}\)
证明:
\[\begin{aligned} f^{'}(x)&=\lim\limits_{\Delta x \to 0}\frac{f(x_0+\Delta x)-f(x)}{\Delta x}\\ &=\lim\limits_{\Delta x \to 0}\frac{(x_0+\Delta x)^a-x^a}{\Delta x}\\ &=\lim\limits_{\Delta x \to 0}\frac{x^a[(1+\frac{\Delta x}{x})^a-1]}{\Delta x}\\ &=\lim\limits_{\Delta x \to 0}\frac{x^a[e^{a\ln_(1+\frac{\Delta x}{x})}-1]}{\Delta x}\\ &=\lim\limits_{\Delta x \to 0}\frac{x^a[e^{a\frac{\Delta x}{x})}-1]}{\Delta x}\\ &=\lim\limits_{\Delta x \to 0}\frac{x^a\cdot a \frac{\Delta x}{x}}{\Delta x}\\ &=ax^{a-1} \end{aligned} \]- \(f(x)=a^x\Rightarrow f^{'}(x)=a^x\ln a\)
证明:
\[\begin{aligned} f^{'}(x)&=\lim\limits_{\Delta x \to 0}\frac{f(x_0+\Delta x)-f(x)}{\Delta x}\\ &=\lim\limits_{\Delta x \to 0}\frac{a^{x+\Delta x}-a^x}{\Delta x}\\ &=a^x\lim\limits_{\Delta x \to 0}\frac{a^{\Delta x}-1}{\Delta x}\\ &=a^x\lim\limits_{\Delta x \to 0}\frac{e^{\Delta x \ln a}-1}{\Delta x}\\ &=a^x\lim\limits_{\Delta x \to 0}\frac{\Delta x \ln a}{\Delta x}\\ &=a^x \ln a \end{aligned} \]- \(f(x)=\sin x\Rightarrow f^{'}(x)=\cos x\)
证明:
\[\begin{aligned} f^{'}(x)&=\lim\limits_{\Delta x \to 0}\frac{f(x_0+\Delta x)-f(x)}{\Delta x}\\ &=\lim\limits_{\Delta x \to 0}\frac{\sin(x+\Delta x)-\sin(x)}{\Delta x}\\ &=\lim\limits_{\Delta x \to 0}\frac{2\cos(\frac{2x+\Delta x}{2})\sin(\frac{\Delta x}{2})}{\Delta x}\\ &=\lim\limits_{\Delta x \to 0}\cos(\frac{2x+\Delta x}{2})\\ &= \cos x \end{aligned} \]- \(f(x)=\cos x\Rightarrow f^{'}(x)=-\sin x\)
证明:
\[\begin{aligned} f^{'}(x)&=\lim\limits_{\Delta x \to 0}\frac{f(x_0+\Delta x)-f(x)}{\Delta x}\\ &=\lim\limits_{\Delta x \to 0}\frac{\cos(x+\Delta x)-\cos(x)}{\Delta x}\\ &=\lim\limits_{\Delta x \to 0}\frac{-2\sin(\frac{2x+\Delta x}{2})\sin(\frac{\Delta x}{2})}{\Delta x}\\ &=\lim\limits_{\Delta x \to 0}-\sin(\frac{2x+\Delta x}{2})\\ &= -\sin x \end{aligned} \]- \(f(x)=e^x\Rightarrow f^{'}(x)=e^x\)
证明:
\[\begin{aligned} f^{'}(x)&=\lim\limits_{\Delta x \to 0}\frac{f(x_0+\Delta x)-f(x)}{\Delta x}\\ &=\lim\limits_{\Delta x \to 0}\frac{e^{x+\Delta x}-e^x}{\Delta x}\\ &=e^x\lim\limits_{\Delta x \to 0}\frac{e^{\Delta x}-1}{\Delta x}\\ &=e^x\lim\limits_{\Delta x \to 0}\frac{e^{\Delta x \ln e}-1}{\Delta x}\\ &=e^x\lim\limits_{\Delta x \to 0}\frac{\Delta x \ln e}{\Delta x}\\ &=e^x \ln e\\ &=e^x \end{aligned} \]- $$f(x)=\log_a^x\Rightarrow f^{'}(x)=\frac{1}{x\ln a}$$
证明:
\[\begin{aligned} f^{'}(x)&=\lim\limits_{\Delta x \to 0}\frac{f(x_0+\Delta x)-f(x)}{\Delta x}\\ &=\lim\limits_{\Delta x \to 0}\frac{\log_a^{x+\Delta x}-\log_a^x}{\Delta x}\\ &=\lim\limits_{\Delta x \to 0}\frac{\log_a^{1+\frac{\Delta x}{x}}}{\Delta x}\\ &=\lim\limits_{\Delta x \to 0}\frac{\ln (1+\frac{\Delta x}{x})}{\Delta x \ln a}\\ &=\lim\limits_{\Delta x \to 0}\frac{\frac{\Delta x}{x}}{\Delta x \ln a}\\ &=\frac{1}{x\ln a}\\ \end{aligned} \]- \(f(x)=\ln x\Rightarrow f^{'}(x)=\frac{1}{x}\)
证明:
\[\begin{aligned} f^{'}(x)&=\lim\limits_{\Delta x \to 0}\frac{f(x_0+\Delta x)-f(x)}{\Delta x}\\ &=\lim\limits_{\Delta x \to 0}\frac{\log_e^{x+\Delta x}-\log_e^x}{\Delta x}\\ &=\lim\limits_{\Delta x \to 0}\frac{\log_e^{1+\frac{\Delta x}{x}}}{\Delta x}\\ &=\lim\limits_{\Delta x \to 0}\frac{\ln (1+\frac{\Delta x}{x})}{\Delta x \ln e}\\ &=\lim\limits_{\Delta x \to 0}\frac{\frac{\Delta x}{x}}{\Delta x \ln e}\\ &=\frac{1}{x\ln e}\\ &=\frac{1}{x} \end{aligned} \]3. 导数四则运算
-
加/减法:\([f(x)\pm g(x)]^{'}=f^{'}(x)\pm g^{'}(x)\)
-
数乘:\([kf(x)]^{'}=kf^{'}(x)\)
-
乘法:\([f(x)g(x)]^{'}=f^{'}(x)g(x)+f(x)g^{'}(x)\)
-
除法:\([\frac{g(x)}{f(x)}]^{'}=\frac{[f(x)g^{'}(x)-f^{'}(x)g(x)]}{f(x)^2}\)