目录
向量的外积
定义
定义1 2个向量\(\bm{a},\bm{b}\)的外积(记作\(\bm{a}\times \bm{b}\))仍然是一个向量,其长度规定为:
\[|\bm{a}\times \bm{b}|=|\bm{a}||\bm{b}|\sin<\bm{a},\bm{b}> \]
方向规定(符合右手规则):与\(\bm{a}, \bm{b}\)均垂直,且向量\(\bm{a},\bm{b},\bm{a}\times\bm{b}\)形成向量系——右手四指从\(\bm{a}\)弯向\(\bm{b}\)(转角<π)时,拇指的指向就是\(\bm{a}\times\bm{b}\)的方向.
如果\(\bm{a},\bm{b}\)中有一个为0,则\(\bm{a}\times \bm{b}=0\).
推论1 \(\bm{a}\times\bm{b}=0\)的充要条件:\(\bm{a},\bm{b}\)共线.
证明:
\[a\times b = 0 \Leftrightarrow |a||b|\sin\braket{a,b}=0 \Leftrightarrow |a|=0,|b|=0或\sin\braket{a,b}=0\Leftrightarrow a,b共线 \]几何意义
当\(\bm{a},\bm{b}\)不共线时,\(|\bm{a}\times \bm{b}|\)表示以\(\bm{a},\bm{b}\)为邻边的平行四边形的面积.
\(|\bm{a}\times \bm{b}|\)的方向符合右手定则(下图垂直向量\(\bm{a}.\bm{b}\)所确定平面向上):
外积的运算规律
命题1 若向量\(\bm{a}\neq 0\),则\(\bm{a}\times\bm{b}=\bm{a}\times\bm{b_2}\),其中\(\bm{b_2}\)是\(\bm{b}\)沿方向\(\bm{a}\)的外射影.
注:外射影指\(\bm{b}\)在\(\bm{a}\)垂直方向的投影,模为\(|\bm{b}|\sin<\bm{a},\bm{b}>\).
证:\(\bm{b}=\bm{b_1}+\bm{b_2}\),其中\(\bm{b_1}//\bm{a},\bm{b_2}⊥\bm{a}\),而投影直角三角形中,\(\bm{b}|\sin<\bm{a},\bm{b}>\)
而
又\(\bm{a}\times\bm{b}\)与\(\bm{a}\times\bm{b_2}\)同向
∴\(\bm{a}\times\bm{b}=\bm{a}\times\bm{b_2}\).
命题2 设\(\bm{e}\)是单位向量,\(\bm{b}⊥\bm{e}\),则\(\bm{e}\times\bm{b}\)等于\(\bm{b}\)按右手螺旋规则绕\(\bm{e}\)旋转90°得到向量\(\bm{b}'\).
证明:
\(|\bm{e}\times\bm{b}|=|\bm{e}||\bm{b}|\sin<\bm{e},\bm{b}>=|\bm{b}|\)
∵\(\bm{b}'\)由\(\bm{b}\)旋转90°得到
∴\(|\bm{b}|=|\bm{b}'|=|\bm{e}\times \bm{b}|\),\(\bm{b'}⊥\bm{b}, \bm{b'}⊥\bm{e}\).
∴\(\bm{b'}//\bm{e}\times \bm{b}\)
又由上图知,\(\bm{b}', \bm{e}\times \bm{b}\)同向
∴\(\bm{b}'=\bm{e}\times\bm{b}\)
推论2 若\([O;\bm{e_1},\bm{e_1},\bm{e_2},\bm{e_3}]\)为右手直角坐标系,则有
\[\bm{e_1}\times\bm{e_2}=\bm{e_3},\bm{e_2}\times\bm{e_3}=\bm{e_1},\bm{e_3}\times\bm{e_1}=\bm{e_2} \]
定理1 外积运算规律:对于任意向量\(\bm{a},\bm{b},\bm{c}\),任意实数λ,有
1)\(\bm{a}\times\bm{b}=-\bm{b}\times{a}\)(反交规律);
2)\((\lambda \bm{a})\times\bm{b}=\lambda(\bm{a}\times\bm{b})\);
3)\(\bm{a}\times(\bm{b}+\bm{c})=\bm{a}\times\bm{b}+\bm{a}\times\bm{c}\)(左分配律)
\((\bm{b}+\bm{c})\times\bm{a}=\bm{b}\times\bm{a}+\bm{c}\times\bm{a}\)(右分配律).
证明:
1) 由外积定义可知\(\bm{a}\times \bm{b},\bm{b}\times \bm{a}\)模相等,方向相反,故等式成立.
2) \(|(\lambda \bm{a})\times\bm{b}|= |\lambda\bm{a}||\bm{b}|\sin<\lambda\bm{a},\bm{b}>=|\lambda||\bm{a}||\bm{b}|\sin<\bm{a},\bm{b}>=|\lambda||\bm{a}\times\bm{b}| =|\lambda(\bm{a}\times\bm{b})|\)
\(\lambda>0\)时,\(\lambda \bm{a}, \bm{a}\)同向 => \((\lambda \bm{a})\times\bm{b}\)与\(\lambda(\bm{a}\times\bm{b})\)同向;
\(\lambda<0\)时,等式左边与与\((\bm{a}\times\bm{b})\)反向,而右边也与\((\bm{a}\times\bm{b})\)反向 => 左边与右边同向.
\(\lambda=0\)时,等式显然成立.
3)左分配律,
设\(\bm{a}\)方向单位向量\(\bm{a^0}\),将向量\(\bm{b},\bm{c}\)分别分解为\(\bm{a^0}\)方向及其垂直方向的2个分量,设\(\bm{b}=\bm{b_1}+\bm{b_2}\),其中\(\bm{b_1}//\bm{a^0}⊥\bm{b_2}, \bm{c_1}//\bm{a^0}⊥\bm{c_2}\).
由命题1知,对外积有贡献的是向量的外射影. 因此
\[左边=|\bm{a}|[\bm{a^0}\times(\bm{b_2}+\bm{c_2})] \]\(\bm{a^0}⊥\bm{b_2},\bm{c_2}=>\bm{a^0}⊥\bm{d}(\bm{d}=\bm{b_2}+\bm(c_2))\)
根据命题2,\(\bm{a^0}\times \bm{d}\)等价于\(\bm{d}\)绕\(\bm{a^0}\)向右旋转90°得到的向量\(\bm{d'}\).
同理,
\(\bm{a^0}\times \bm{b_2}\)等价于\(\bm{b_2}\)绕\(\bm{a^0}\)向右旋转90°得到的向量\(\bm{b_2'}\);
\(\bm{a^0}\times \bm{c_2}\)等价于\(\bm{c_2}\)绕\(\bm{a^0}\)向右旋转90°得到的向量\(\bm{c_2}\).
因此,
\[\begin{aligned} 左边&=|\bm{a}|\bm{d'}\\ 右边&=|\bm{a}|(\bm{b_2'}+\bm{c_2'}) \end{aligned} \]旋转前,\(\bm{b_2},\bm{c_2},\bm{d}\)形成三角形,旋转后也一定能形成三角形,因此,
\[\bm{d'}=\bm{b_2'}+\bm{c_2'} \]故左边=右边.
右分配律,
\[\begin{aligned} (\bm{b}+\bm{c})\times \bm{a}&=-\bm{a}\times(\bm{b}+\bm{c})\\ &=-(\bm{a}\times\bm{b}+\bm{a}\times\bm{c})\\ &=\bm{b}\times\bm{a}+\bm{c}\times\bm{a} \end{aligned} \]计算向量的外积
外积的坐标计算
仿射坐标系\([O;\bm{e_1},\bm{e_2},\bm{e_3}]\)下,设\(\bm{a},\bm{b}\)的坐标为\((a_1,a_2,a_3)(b_1,b_2,b_3)\),则
\[\begin{aligned} \bm{a}\times \bm{b}&=(a_1\bm{e_1}+a_2\bm{e_2}+a_3\bm{e_3})\times (b_1\bm{e_1}+b_2\bm{e_2}+b_3\bm{e_3})\\ &=(a_1b_2-a_2b_1)\bm{e_1}\times \bm{e_2}+(a_3b_1-a_1b_3)\bm{e_3}\times \bm{e_1}+(a_2b_3-a_3b_2)\bm{e_2}\times \bm{e_3} \end{aligned} \]因此,只要知道基向量的外积,就能求出\(\bm{a}\times \bm{b}\).
右手直角标架下,\(\bm{e_1}\times \bm{e_2}=\bm{e_3},\bm{e_2}\times \bm{e_3}=\bm{e_1},\bm{e_3}\times \bm{e_1}=\bm{e_2}\)
因此,
外积的坐标表示
\[\begin{pmatrix} \begin{vmatrix} a_2 & b_2\\ a_3 & b_3 \end{vmatrix}, -\begin{vmatrix} a_1 & b_1\\ a_3 & b_3 \end{vmatrix}, \begin{vmatrix} a_1 & b_1\\ a_2 & b_2 \end{vmatrix} \end{pmatrix} \]定理2 设\(\bm{a},\bm{b}\)在右手直角坐标系中坐标坐标为\((a_1,a_2,a_3)(b_1,b_2,b_3)\),则\(\bm{a}\times \bm{b}\)的坐标为
证明很简单,由上面的坐标计算向量外积即可知. 也可以写成三阶行列式形式:
\[\bm{a}\times \bm{b}=\begin{vmatrix} \bm{e_1} & a_1 & b_1\\ \bm{e_2} & a_2 & b_2\\ \bm{e_3} & a_3 & b_3 \end{vmatrix} \]tips:按第1列展开可得坐标形式.
向量的混合积
定义
定义2 \(\bm{a}\times\bm{b}\cdot \bm{c}\)称为向量\(\bm{a},\bm{b},\bm{c}\)的混合积.
几何意义
混合积\(\bm{a}\times\bm{b}\cdot \bm{c}\)几何意义是什么?
当\(\bm{a},\bm{b}\)不共线时,知外积\(|\bm{a}\times\bm{b}|\)表示\(\bm{a},\bm{b}\)为邻边的平行四边形面积.而\(\bm{a}\times\bm{b}\cdot \bm{c}\)表示以\(\bm{a},\bm{b},\bm{c}\)为棱的平行六面体的体积.
如下图,平行六面体ABCDA'B'C'D'中,
\(S_{ABCD}=|\bm{a}\times\bm{b}|, h=|\bm{c}||\cos \theta| \implies V=S_{ABCD}\cdot h=|\bm{a}\times\bm{b}||\bm{c}||\cos\theta|\)
而θ是向量\(\bm{c},\bm{a}\times\bm{b}\)的夹角
∴\(V=|\bm{a}\times\bm{b}\cdot \bm{c}|\)
当\(\bm{a}\times \bm{b}\cdot \bm{c}>0\)时,θ为锐角,\((\bm{a},\bm{b},\bm{c})\)构成右手系;
当\(\bm{a}\times \bm{b}\cdot \bm{c}=0\)时,θ为直角,\(\bm{a},\bm{b},\bm{c}\)共面;
当\(\bm{a}\times \bm{b}\cdot \bm{c}<0\)时,θ为钝角,\((\bm{a},\bm{b},\bm{c})\)构成左手系.
命题3 3个向量\(\bm{a},\bm{b},\bm{c}\)共面的充要条件:\(\bm{a}\times \bm{b}\cdot c=0\).
证明:由混合积体积意义,即可得证.
常用性质
1)\(\bm{a}\times \bm{b}\cdot \bm{c}=\bm{b}\times \bm{c}\cdot \bm{a}=\bm{c}\times \bm{a}\cdot \bm{b}\);
2)\(\bm{a}\times \bm{b}\cdot c=\bm{a}\cdot \bm{b}\times \bm{c}\).
证明:
1)∵\(|\bm{a}\times \bm{b}\cdot \bm{c}|,|\bm{b}\times \bm{c}\cdot \bm{a}|,|\bm{c}\times \bm{a}\cdot \bm{b}|\)表示以\(\bm{a},\bm{b},\bm{c}\)为棱的平行六面体体积
∴\(|\bm{a}\times \bm{b}\cdot \bm{c}|=|\bm{b}\times \bm{c}\cdot \bm{a}|=|\bm{c}\times \bm{a}\cdot \bm{b}|\)
如果\((\bm{a},\bm{b},\bm{c})\)为右手系,则\((\bm{b},\bm{c},\bm{a}), (\bm{c},\bm{a},\bm{b})\)均为右手系,即\(\bm{a}\times \bm{b}\cdot \bm{c},\bm{b}\times \bm{c}\cdot \bm{a}, \bm{c}\times \bm{a}\cdot \bm{b}\)结果均>=0;
反之若为左手系,结果均<0;
也就是说,三者同号. 故得证.
2)\(\bm{a}\times\bm{b}\cdot\bm{c}=\bm{b}\times\bm{c}\cdot \bm{a}=(\bm{b}\times\bm{c})\cdot \bm{a}=\bm{a}\cdot (\bm{b}\times\bm{c})=\bm{a}\cdot \bm{b}\times\bm{c}\)
tips: 外积优先级比内积更高,否则内积得到的常数与向量进行外积运算没有意义.
计算向量的混合积
混合积的坐标计算
取仿射标架\([O;\bm{e_1},\bm{e_2},\bm{e_3}]\),设\(\bm{a},\bm{b},\bm{c}\)坐标分别为\((a_1,a_2,a_3),(b_1,b_2,b_3),(c_1,c_2,c_3)\). 则
\[\begin{aligned} \bm{a}\times\bm{b} \cdot \bm{c}&=(a_1,a_2,a_3)\times (b_1,b_2,b_3)\cdot (c_1,c_2,c_3)\\ &=(a_1\bm{e_1}+a_2\bm{e_2}+a_3\bm{e_3})\times (b_1\bm{e_1}+b_2\bm{e_2}+b_3\bm{e_3})\cdot (c_1\bm{e_1}+c_2\bm{e_2}+c_3\bm{e_3})\\ &=[(a_1b_2-a_2b_1)\bm{e_1}\bm{e_2}+(a_3b_1-a_1b_3)\bm{e_3}\times \bm{e_1}+(a_2b_3-a_3b_2)\bm{e_2}\times \bm{e_3}](c_1\bm{e_1}+c_2\bm{e_2}+c_3\bm{e_3})\\ &=[(a_1b_2-a_2b_1)c_3+(a_3b_1-a_1b_3)c_2+(a_2b_3-a_3b_2)c_1]\bm{e_1}\times \bm{e_2}\cdot \bm{e_3}\\ &=\begin{vmatrix} a_1 & b_1 & c_1\\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{vmatrix}\bm{e_1}\times \bm{e_2} \cdot \bm{e_3} \end{aligned} \]∵\(\bm{e_1},\bm{e_2},\bm{e_3}\)不共面
∴\(\bm{e_1}\times \bm{e_2} \cdot \bm{e_3}\neq 0\).
定理3 如果\([O;\bm{e_1},\bm{e_2},\bm{e_3}]\)为右手直角标架,向量\(\bm{a},\bm{b},\bm{c}\)坐标分别为\((a_1,a_2,a_3),(b_1,b_2,b_3),(c_1,c_2,c_3)\),则
\[\bm{a}\times\bm{b} \cdot \bm{c}=\begin{vmatrix} a_1 & b_1 & c_1\\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{vmatrix} \]
证明:∵\([O;\bm{e_1},\bm{e_2},\bm{e_3}]\)为右手直角标架
∴\(\bm{e_1}\times\bm{e_2}=\bm{e_3}\)
∴\(\bm{e_1}\times \bm{e_2} \cdot \bm{e_3}=\bm{e_3}\cdot \bm{e_3}=1\)
∴\(\bm{a}\times\bm{b} \cdot \bm{c}=\begin{vmatrix}
a_1 & b_1 & c_1\\
a_2 & b_2 & c_2\\
a_3 & b_3 & c_3
\end{vmatrix}\bm{e_1}\times \bm{e_2} \cdot \bm{e_3}=\begin{vmatrix}
a_1 & b_1 & c_1\\
a_2 & b_2 & c_2\\
a_3 & b_3 & c_3
\end{vmatrix}\)
三向量(或四点)共面条件
- 三向量共面
定理4 设\(\bm{a},\bm{b},\bm{c}\)的仿射坐标\((a_1,a_2,a_3),(b_1,b_2,b_3),(c_1,c_2,c_3)\),则\(\bm{a},\bm{b},\bm{c}\)共面的充要条件:
\[\begin{vmatrix} a_1 & b_1 & c_1\\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{vmatrix}=0 \]
证明:
由命题3知,3向量共面充要条件:\(\bm{a}\times\bm{b}\cdot \bm{c}=0\)
由上面混合积的坐标计算知,
∵\(\bm{e_1},\bm{e_2},\bm{e_3}\)不共面
∴\(\bm{e_1}\times \bm{e_2}\cdot \bm{e_3}\neq 0\)
∴3向量共面充要条件是\(\begin{vmatrix}
a_1 & b_1 & c_1\\
a_2 & b_2 & c_2\\
a_3 & b_3 & c_3
\end{vmatrix}=0\)
- 四点共面
推论3 设4个点A,B,C,D的仿射坐标\((x_i,y_i,z_i),i=1,2,3,4\). 则A,B,C,D共面的充要条件:
\[\begin{vmatrix} x_1 & x_2 & x_3 & x_4\\ y_1 & y_2 & y_3 & y_4\\ z_1 & z_2 & z_3 & z_4\\ 1 & 1 & 1 & 1 \end{vmatrix}=0 \]
证明:A,B,C,D共面,即\(\overrightarrow{DA},\overrightarrow{DB},\overrightarrow{DC}\)共面
由三向量共面定理知,充要条件为:
等式等价于(按最后一行展开)
\[\begin{vmatrix} x_1-x_4 & x_2-x_4 & x_3-x_4 & x_4\\ y_1-y_4 & y_2-y_4 & y_3-y_4 & y_4\\ z_1-z_4 & z_2-z_4 & z_3-z_4 & z_4\\ 0 & 0 & 0 & 1 \end{vmatrix}=0 \]将行列式前3列都加上最后一列,值不变:
\[\begin{vmatrix} x_1-x_4 & x_2-x_4 & x_3-x_4 & x_4\\ y_1-y_4 & y_2-y_4 & y_3-y_4 & y_4\\ z_1-z_4 & z_2-z_4 & z_3-z_4 & z_4\\ 0 & 0 & 0 & 1 \end{vmatrix}= \begin{vmatrix} x_1 & x_2 & x_3 & x_4\\ y_1 & y_2 & y_3 & y_4\\ z_1 & z_2 & z_3 & z_4\\ 1 & 1 & 1 & 1\\ \end{vmatrix}=0 \]参考
[1]丘维声.解析几何[M].北京大学出版社,2017.
标签:end,cdot,bm,times,解析几何,vmatrix,外积,向量 From: https://www.cnblogs.com/fortunely/p/17850504.html