首页 > 其他分享 >【Unity3D】半球卷屏特效

【Unity3D】半球卷屏特效

时间:2023-03-21 10:05:02浏览次数:52  
标签:Unity3D 特效 卷屏 uv pos 坐标 凸镜 alpha float2

1 原理

凸镜贴图渐变凸镜贴图 中介绍了使用 OpenGL 实现凸镜贴图及其原理,通过顶点坐标映射到纹理坐标,并构造三角形网格,构建了真正的三维凸镜模型。本文通过 Shader 实现半球卷屏特效,通过屏幕坐标映射到纹理坐标,不需要构建凸镜模型,效率更高。

1)凸变换原理

​ 以下凸变换的原理图及公式推导,该图是截面图,vertex 是屏幕坐标,texture 是纹理坐标。

img

​ 注意:屏幕坐标原坐标原点在屏幕左上角,y 轴向下,x、y 轴的值域分别为 [0, ScreenWidth]、[0, ScreenHeight],纹理坐标原坐标原点在纹理图片左下角,x、y 轴的值域都是 [0, 1],这里已进行了一些预处理,将屏幕坐标和纹理坐标的坐标轴都变换到中心位置,x、y 轴的值域都变换到 [-1, 1]。

2)渐变原理

​ 当凸镜半角 (φ/2) 较小时(近似0°),凸镜半径较大 (近似无穷大),屏幕只需要贴到凸镜的很小一块区域,该区域近似一个平面;当凸镜半角 (φ/2) 较大时(等于90°),凸镜半径较大(等于 1/sin(φ/2)),屏幕贴满整个凸镜;当凸镜半角 (φ/2) 由 0° 渐变到 90° 时,就会看到屏幕逐渐卷曲的效果。

​ 本文代码资源见→Unity3D半球卷屏特效

2 代码实现

​ CurlEffect.cs

using UnityEngine;
 
[RequireComponent(typeof(Camera))]  // 屏幕后处理特效一般都需要绑定在像机上
public class CurlEffect : MonoBehaviour {
    public float curlSpeed = 0.4f; // 卷屏速度
    private Material smallConvexMaterial; // 小凸变换材质
    private Material largeConvexMaterial; // 大凸变换材质
    private bool enableSmallConvex = false; // 小凸变换开关
    private bool enableLargeConcave = false; // 大凸变换开关
    private float alpha; // 卷屏凸镜渐变半角
 
    private void Awake() {
        smallConvexMaterial = new Material(Shader.Find("Custom/Curl/SmallConvex"));
        largeConvexMaterial = new Material(Shader.Find("Custom/Curl/LargeConvex"));
        smallConvexMaterial.hideFlags = HideFlags.DontSave;
        largeConvexMaterial.hideFlags = HideFlags.DontSave;
    }
 
    private void Update() {
        if (Input.GetMouseButton(0)) {
            alpha = 0.01f;
            curlSpeed = Mathf.Abs(curlSpeed);
            enableSmallConvex = true;
            enableLargeConcave = false;
        }
    }

    private void OnRenderImage (RenderTexture source, RenderTexture destination) {
        if (enableSmallConvex) {
            smallConvexMaterial.SetFloat("_alpha", alpha);
            IncreaseAlpha();
            Graphics.Blit (source, destination, smallConvexMaterial);
        } else if (enableLargeConcave) {
            largeConvexMaterial.SetFloat("_alpha", alpha);
            IncreaseAlpha();
            Graphics.Blit (source, destination, largeConvexMaterial);
        } else {
            Graphics.Blit (source, destination);
        }
	}

    private void IncreaseAlpha() { // alpha自增
        alpha += Time.deltaTime * curlSpeed;
        if (alpha > Mathf.PI / 2 && curlSpeed > 0) {
            alpha = Mathf.PI / 2;
            curlSpeed = -curlSpeed;
        } else if (alpha < 0.01f && curlSpeed < 0) {
            alpha = 0.01f;
            curlSpeed = -curlSpeed;
            enableSmallConvex = !enableSmallConvex; // 大凸镜和小凸镜交替执行
            enableLargeConcave = ! enableLargeConcave;
        }
    }
}

​ SmallConvex.shader

Shader "Custom/Curl/SmallConvex" // 小凸镜变换
{
	Properties 
	{
		_MainTex ("mainTex", 2D) = "white" {}
	}
 
	SubShader 
	{
		Pass
		{
			ZTest Always
			Cull Off
			ZWrite Off
			Fog { Mode off }
 
			CGPROGRAM
 
			#pragma vertex vert_img // UnityCG.cginc中定义了vert_img方法, 对vertex和texcoord进行了处理, 输出v2f_img中的pos和uv
			#pragma fragment frag
			#pragma fragmentoption ARB_precision_hint_fastest
 
            #include "UnityCG.cginc"
 
            sampler2D _MainTex;
            float _alpha;
 
            float2 beforeConvex(float2 pos)
            { // 小凸化前置变换, 将pos的窄边映射到(-1, 1)之间
                pos /= _ScreenParams.xy; // 坐标映射到(0, 1)之间
                pos = pos * 2 - 1; // 坐标映射到(-1, 1)之间
                pos.y = -pos.y; // 屏幕坐标系原点在左上角, y轴向下, 所以要取反
                pos.x *= (_ScreenParams.x / _ScreenParams.y); // 窄边映射到(-1, 1)之间, 宽边映射到(-ratio, ratio)之间(ratio为屏幕宽高比)
                return pos;
            }

            float2 convex(float2 pos)
            { // 凸化变换, 将屏幕坐标映射到纹理坐标, 窄边映射到(-1, 1)之间, 宽边大致映射到(-ratio, ratio)之间(ratio为屏幕宽高比)
                float rho = length(pos);
                float beta = rho * sin(_alpha);
                if (beta > 1)
                {
                    return float2(-10000, -1000000);
                }
                return pos * asin(beta) / _alpha / rho;
            }

            float2 afterConvex(float2 uv)
            { // 小凸化后置变换, 将uv的窄边和宽边都映射到(0, 1)之间
                uv.x = uv.x / (_ScreenParams.x / _ScreenParams.y) / 2 + 0.5; // 坐标由(-ratio, ratio)还原到(0, 1)
                uv.y = uv.y / 2 + 0.5; // 坐标由(-1, 1)还原到(0, 1)
                return uv;
            }

            fixed4 frag(v2f_img i) : SV_Target // uv坐标的计算不能在顶点着色器中进行, 因为屏后处理的顶点只有屏幕的4个角顶点
            {
                float2 pos = beforeConvex(i.pos.xy);
                float2 uv = convex(pos);
                uv = afterConvex(uv);
                if (uv.x < 0 || uv.y < 0 || uv.x > 1 || uv.y > 1)
                {
                    return float4(0, 0, 0, 0);
                }
                return tex2D(_MainTex, uv);
            }
 
			ENDCG
		}
	}
 
	Fallback off
}

​ LargeConvex.shader

Shader "Custom/Curl/LargeConvex" // 大凸镜变换
{
	Properties 
	{
		_MainTex ("mainTex", 2D) = "white" {}
	}
 
	SubShader 
	{
		Pass
		{
			ZTest Always
			Cull Off
			ZWrite Off
			Fog { Mode off }
 
			CGPROGRAM
 
			#pragma vertex vert_img // UnityCG.cginc中定义了vert_img方法, 对vertex和texcoord进行了处理, 输出v2f_img中的pos和uv
			#pragma fragment frag
			#pragma fragmentoption ARB_precision_hint_fastest
 
            #include "UnityCG.cginc"
 
            sampler2D _MainTex;
            float _alpha;
 
            float2 beforeConvex(float2 pos)
            { // 大凸化前置变换, 将pos的宽边映射到(-1, 1)之间
                pos /= _ScreenParams.xy; // 坐标映射到(0, 1)之间
                pos = pos * 2 - 1; // 坐标映射到(-1, 1)之间
                pos.y = -pos.y; // 屏幕坐标系原点在左上角, y轴向下, 所以要取反
                pos.y /= (_ScreenParams.x / _ScreenParams.y); // 宽边映射到(-1, 1)之间, 窄边映射到(-1/ratio, 1/ratio)之间(ratio为屏幕宽高比)
                return pos;
            }

            float2 convex(float2 pos)
            { // 凸化变换, 将屏幕坐标映射到纹理坐标, 宽边映射到(-1, 1)之间, 窄边大致映射到(-1/ratio, 1/ratio)之间(ratio为屏幕宽高比)
                float rho = length(pos);
                float beta = rho * sin(_alpha);
                if (beta > 1)
                {
                    return float2(-10000, -1000000);
                }
                return pos * asin(beta) / _alpha / rho;
            }

            float2 afterConvex(float2 uv)
            { // 大凸化后置变换, 将uv的宽边和窄边都映射到(0, 1)之间
                uv.x = uv.x / 2 + 0.5; // 坐标由(-1, 1)还原到(0, 1)
                uv.y = uv.y * (_ScreenParams.x / _ScreenParams.y) / 2 + 0.5; // 坐标由(-ratio, ratio)还原到(0, 1)
                return uv;
            }

            fixed4 frag(v2f_img i) : SV_Target // uv坐标的计算不能在顶点着色器中进行, 因为屏后处理的顶点只有屏幕的4个角顶点
            {
                float2 pos = beforeConvex(i.pos.xy);
                float2 uv = convex(pos);
                uv = afterConvex(uv);
                if (uv.x < 0 || uv.y < 0 || uv.x > 1 || uv.y > 1)
                {
                    return float4(0, 0, 0, 0);
                }
                return tex2D(_MainTex, uv);
            }
 
			ENDCG
		}
	}
 
	Fallback off
}

3 运行效果

img

4 推荐阅读

​ 声明:本文转自【Unity3D】半球卷屏特效

标签:Unity3D,特效,卷屏,uv,pos,坐标,凸镜,alpha,float2
From: https://www.cnblogs.com/zhyan8/p/17237941.html

相关文章

  • 【Unity3D】卷轴特效
    1原理​当一个圆在地面上沿直线匀速滚动时,圆上固定点的运动轨迹称为旋轮线(或摆线、圆滚线)。本文实现的卷轴特效使用了旋轮线相关理论。​以下是卷轴特效原理及......
  • 【Unity3D】水波特效
    1水波特效原理​水波特效属于Unity3D后处理特效,其原理是:对渲染后的纹理进行局部挤压和拉升变换,即对局部uv坐标进行周期性的偏移运动,实现波纹效果。​1)波形......
  • 【Unity3D】选中物体描边特效
    1前言​描边的难点在于如何检测和识别边缘,当前实现描边特效的方法主要有以下几种:​1)基于顶点膨胀的描边方法​在SubShader中开2个Pass渲染通道,第一......
  • 【Unity3D】绘制物体表面三角形网格
    1仅绘制三角形网格​1)创建游戏对象​创建一个空对象,重命名为Grid,并在其下添加需要绘制网格的对象,如下:​场景显示如下:​2)添加脚本组件​Grid......
  • 【Unity3D】绘制物体外框线条盒子
    1需求描述​点选物体、框选物体、绘制外边框中介绍了物体投影到屏幕上的二维外框绘制方法,本文将介绍物体外框线条盒子绘制方法。内框:选中物体后,绘制物体的内框(紧......
  • 【Unity3D】点选物体、框选物体、绘制外边框
    1需求描述​绘制物体外框线条盒子中介绍了绘制物体外框长方体的方法,本文将介绍物体投影到屏幕上的二维外框绘制方法。点选物体:点击物体,可以选中物体,按住Ctrl追......
  • 【Unity3D】使用GL绘制线段
    1前言​线段渲染器LineRenderer、拖尾TrailRenderer、绘制物体表面三角形网格从不同角度介绍了绘制线段的方法,本文再介绍一种新的绘制线段的方法:使用GL绘制线段。......
  • 【Unity3D】VideoPlayer组件
    1简介​AudioSource组件中介绍了音频的播放,本文将介绍基于VideoPlayer组件实现视频播放。​VideoPlayer属性面板如下:Source:视频源类型,有2种类型:VideoC......
  • 【Unity3D】固定管线着色器二
    1前言​固定管线着色器一中介绍了Shader中外部属性、光照、贴图等基础用法,本文将进一步讲解固定管线着色器,介绍正面与反面剔除、Alpha测试、深度测试、混合、渲......
  • 【Unity3D】固定管线着色器一
    1前言​着色器(Shader)是渲染管线中最重要的一环,Unity3D底层基于OpenGL实现,读者可以通过渲染管线了解Unity3D渲染流程。​OpenGL1.x为固定管线,2.x之后......