首页 > 其他分享 >1.4.2(2) 用空间向量研究平面间的夹角

1.4.2(2) 用空间向量研究平面间的夹角

时间:2022-09-02 21:57:55浏览次数:83  
标签:1.4 overrightarrow cdot dfrac sqrt vec 平面 夹角 向量

\({\color{Red}{欢迎到学科网下载资料学习 }}\)
【基础过关系列】2022-2023学年高二数学上学期同步知识点剖析精品讲义(人教A版2019)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

选择性必修第一册同步巩固,难度2颗星!

基础知识

二面角

二面角的平面角是指在二面角\(α-l-β\)的棱上任取一点\(O\),分别在两个半平面内作射线\(AO⊥ l\),\(BO⊥ l\),则\(∠AOB\)为二面角\(α-l-β\)的平面角,二面角的取值范围是\([0 ,π]\).
如图:
image.png
 

平面α与平面β的夹角

平面\(α\)与平面\(β\)相交,形成四个二面角,我们把这四个二面角不大于\(90^o\)的二面角称为平面\(α\)与平面\(β\)的夹角.

空间向量求平面α与平面β的夹角

求法:设平面\(α\)与平面\(β\)的法向量分别为\(\vec{m}\) ,\(\vec{n}\),
再设\(\vec{m}\),\(\vec{n}\)的夹角为\(φ\),平面\(α\)与平面\(β\)的平面角为\(θ\),则\(θ\)为\(φ\)或\(π-φ\) ,
image.png image.png
则 \(\cos \theta=|\cos \varphi|=\left|\dfrac{\vec{m} \cdot \vec{n}}{|\vec{m}||\vec{n}|}\right|=\dfrac{|\vec{m} \cdot \vec{n}|}{|\vec{m}||\vec{n}|}\) .
(与线面所成角的情况一样,均由法向量的方向导致两种情况的出现)
 

【例1】在正方体\(ABCD-A'B'C'D'\)中,易得平面\(ACD'\)与平面\(ABC\)的法向量分别是 \(\overrightarrow{D B^{\prime}}\)、 \(\overrightarrow{B B^{\prime}}\),其夹角是\(φ\),二面角\(D'-AC-B\)为θ,平面\(ACD'\)与平面\(ABC\)的夹角\(α\),判断三个角之间的关系!
image.png
解析 两个法向量的 \(\overrightarrow{D B^{\prime}}\)、 \(\overrightarrow{B B^{\prime}}\)的夹角\(φ=∠DB'B\),二面角\(D'-AC-B\)为\(θ=∠D'OB\)是个钝角,则平面\(ACD'\)与平面\(ABC\)的夹角\(α=π-θ\),而\(φ=π-θ\).所以三角关系是\(α=φ=π-θ\).
 

【例2】两平面的法向量分别为 \(\vec{m}=(0,1,0)\), \(\vec{n}=(0,1,1)\),则两平面的夹角为\(\underline{\quad \quad}\) .
解析 两平面的法向量分别为 \(\vec{m}=(0,1,0)\), \(\vec{n}=(0,1,1)\),
所以 \(\cos \langle\vec{m}, \vec{n}\rangle=\dfrac{\vec{m} \cdot \vec{n}}{|\vec{n}||\vec{m}|}=\dfrac{1}{1 \times \sqrt{2}}=\dfrac{\sqrt{2}}{2}\),则两平面的夹角为\(45^∘\).
 

基本方法

【题型1】求平面间的夹角

【典题1】 正方体\(ABCD-A_1 B_1 C_1 D_1\)的棱长为\(1\),点\(E\),\(F\)分别为\(CD\),\(DD_1\)的中点,求平面\(AED\)与平面\(AEF\)夹角的余弦值.
image.png
解析 因为\(ABCD-A_1 B_1 C_1 D_1\)是正方体,
以\(A\)为原点,\(AB\)为\(x\)轴,\(AD\)为\(y\)轴,\(AA_1\)为\(z\)轴,建立空间直角坐标系,
image.png
依题意得\(A(0,0,0)\), \(F\left(0,1, \dfrac{1}{2}\right)\), \(E\left(\dfrac{1}{2}, 1,0\right)\), \(\overrightarrow{A E}=\left(\dfrac{1}{2}, 1,0\right)\), \(\overrightarrow{A F}=\left(0,1, \dfrac{1}{2}\right)\),
设平面\(AEF\)的法向量\(\vec{n}=(x,y,z)\),
则 \(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{A E}=\dfrac{1}{2} x+y=0 \\ \vec{n} \cdot \overrightarrow{A F}=y+\dfrac{1}{2} z=0 \end{array}\right.\),取\(y=-1\),得 \(\vec{n}=(2,-1,2)\),
易知平面\(ADE\)的法向量\(\vec{m}=(0,0,1)\),
设平面\(AED\)与平面\(AEF\)的夹角为\(θ\),则 \(\cos \theta=\dfrac{|\vec{n} \cdot \vec{m}|}{|\vec{n}| \cdot|\vec{m}|}=\dfrac{2}{3}\),
所以平面\(AED\)与平面\(AEF\)夹角的余弦值为 \(\dfrac{2}{3}\).
 

【典题2】如图,四边形\(ABCD\)是边长为\(3\)的菱形,\(DE⊥\)平面\(ABCD\),\(AB⊥AD\),\(AF∥DE\),\(DE=3AF\).
  (1)求证:\(AC⊥\)平面\(BDE\);
  (2)若\(BE\)与平面\(ABCD\)所成角为\(60°\),求平面\(FBE\)与平面\(DEB\)夹角的正弦值.
image.png
解析 (1)证明:因为\(DE⊥\)平面\(ABCD\),\(AC⊂\)平面\(ABCD\),
所以\(DE⊥AC\).
因为四边形\(ABCD\)是菱形,所以\(AC⊥BD\).
又因为\(BD∩DE=D\),\(BD⊂\)平面\(BDE\),\(DE⊂\)平面\(BDE\),
所以\(AC⊥\)平面\(BDE\).
(2)据题设知\(DA\)、\(DC\)、\(DE\)两两互相垂直.
以\(DA\)、\(DC\)、\(DE\)分别为\(x\)轴,\(y\)轴,\(z\)轴建立空间直角坐标系\(D-xyz\),如图所示,
image.png
因为\(BE\)与平面\(ABCD\)所成角为\(60°\),即\(∠DBE\),所以 \(\dfrac{D E}{B E}=\sqrt{3}\),
又\(AD=3\),\(DE=3AF\),
所以 \(D E=3 \sqrt{6}\), \(A F=\sqrt{6}\),
所以\(A(3,0,0)\),\(B(3,3,0)\), \(F(3,0, \sqrt{6})\), \(E(0,0,3 \sqrt{6})\),\(C(0,3,0)\),
所以 \(\overrightarrow{B F}=(0,-3, \sqrt{6})\), \(\overrightarrow{E F}=(3,0,-2 \sqrt{6})\),
设平面\(FBE\)的一个法向量\(\vec{m}=(x,y,z)\),
则 \(\left\{\begin{array}{l} \vec{m} \cdot \overrightarrow{B F}=-3 y+\sqrt{6} z=0 \\ \vec{m} \cdot \overrightarrow{E F}=3 x-2 \sqrt{6} z=0 \end{array}\right.\),令 \(z=\sqrt{6}\),得 \(\vec{m}=(4,2, \sqrt{6})\).
因为\(AC⊥\)平面\(DEB\),所以 \(\overrightarrow{C A}\)为平面DEB的一个法向量,且 \(\overrightarrow{C A}=(3,-3,0)\),
所以 \(\cos \langle\vec{m}, \overrightarrow{C A}\rangle=\dfrac{\vec{m} \cdot \overrightarrow{C A}}{|\vec{m}| \cdot|\overrightarrow{C A}|}=\dfrac{6}{\sqrt{26} \cdot \sqrt{18}}=\dfrac{\sqrt{13}}{13}\),
所以 \(\sin \langle\vec{m}, \overrightarrow{C A}\rangle=\sqrt{1-\left(\dfrac{\sqrt{13}}{13}\right)^{2}}=\dfrac{2 \sqrt{39}}{13}\).
所以平面\(FBE\)与平面\(DEB\)夹角的正弦值为 \(\dfrac{2 \sqrt{39}}{13}\).
 

巩固练习

1如图,在长方体\(ABCD-A_1 B_1 C_1 D_1\)中,已知 \(A D=\sqrt{6}\), \(A B=\sqrt{3}\), \(A A_{1}=\sqrt{2}\),求平面\(A_1 BD\)与平面\(ABCD\)夹角的大小和二面角\(A_1-BD-C\)的大小.
image.png
 

2如图,四棱锥\(P-ABCD\)中,底面\(ABCD\)为矩形,\(PA⊥\)平面\(ABCD\),\(E\)为\(PD\)的中点.
  (1)证明:\(PB∥\)平面\(AEC\);
  (2)若\(AB=1\),\(AD=2\),\(AP=2\),求平面\(AEC\)与平面\(DAE\)夹角的余弦值.
image.png
 

3 如图,四边形\(ABCD\)为菱形,\(DE⊥\)平面\(ABCD\),\(FC⊥\)平面\(ABCD\),\(DE=2FC\),\(∠DAB=60^∘\),\(DE=DC=2\).
  (1)设\(BE\)的中点为\(H\),证明:\(FH⊥\)平面\(EDB\);
  (2)求二面角\(A-EB-D\)的平面角的正弦值.
image.png
 

参考答案

  1. 答案 平面\(A_1 BD\)与平面\(ABCD\)夹角为\(45^∘\),二面角\(A_1-BD-C\)为\(135^∘\).
    解析 以\(A\)为原点,\(AB\)为\(x\)轴,\(AD\)为\(y\)轴,\(AA_1\)为\(z\)轴,建立空间直角坐标系,
    \(A_{1}(0,0, \sqrt{2})\), \(B(\sqrt{3}, 0,0)\), \(D(0, \sqrt{6}, 0)\),
    \(\overrightarrow{A_{1} B}=(\sqrt{3}, 0,-\sqrt{2})\), \(\overrightarrow{A_{1} D}=(0, \sqrt{6},-\sqrt{2})\),
    设平面\(A_1 BD\)的法向量\(\vec{n}=(x,y,z)\),
    则 \(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{A_{1} B}=\sqrt{3} x-\sqrt{2} z=0 \\ \vec{n} \cdot \overrightarrow{A_{1} D}=\sqrt{6} y-\sqrt{2} z=0 \end{array}\right.\),取 \(x=\sqrt{2}\),得 \(\vec{n}=(\sqrt{2}, 1, \sqrt{3})\),
    易知平面\(ABCD\)的法向量\(\vec{m}=(0,0,1)\),
    设平面\(A_1 BD\)与平面\(ABCD\)夹角为\(θ\),
    则 \(\cos \theta=\dfrac{|\vec{m} \cdot \vec{n}|}{|\vec{m}| \cdot|\vec{n}|}=\dfrac{\sqrt{3}}{\sqrt{2+1+3}}=\dfrac{\sqrt{2}}{2}\),\(∴θ=45^∘\).
    \(∴\)平面\(A_1 BD\)与平面\(ABCD\)夹角为\(45^∘\),二面角\(A_1-BD-C\)为\(135^∘\).

  2. 答案 (1) 略 (2) \(\dfrac{\sqrt{6}}{3}\)
    解析 (1)证明:连接\(BD\),设\(BD∩AC=O\),连接\(EO\),
    \(∵E\)是\(PD\)的中点,\(O\)为\(BD\)的中点,\(∴EO∥PB\),
    又\(∵EO⊂\)平面\(AEC\),\(PB⊄\)平面\(AEC\),
    \(∴PB∥\)平面\(AEC\);
    (2)以\(A\)为坐标原点,分别以\(AB\),\(AD\),\(AP\)所在直线为\(x,y,z\)轴建立空间直角坐标系.
    image.png
    则\(D(0,2,0)\),\(E(0,1,1)\),\(C(1,2,0)\), \(\overrightarrow{A E}=(0,1,1)\), \(\overrightarrow{A C}=(1,2,0)\),
    设\(\vec{n}=(x,y,z)\)为平面\(AEC\)的一个法向量,
    则 \(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{A C}=x+2 y=0 \\ \vec{n} \cdot \overrightarrow{A E}=y+z=0 \end{array}\right.\),取\(z=1\),则\(\vec{n}=(2,-1,1)\),
    又平面\(DAE\)的一个法向量为\(\vec{m}=(1,0,0)\).
    \(\cos <\vec{m}, \vec{n}>=\dfrac{\vec{m} \cdot \vec{n}}{|\vec{m}| \cdot|\vec{n}|}=\dfrac{2}{\sqrt{6}}=\dfrac{\sqrt{6}}{3}\).
    则平面\(AEC\)与平面\(DAE\)夹角的余弦值为 \(\dfrac{\sqrt{6}}{3}\).

  3. 答案 (1) 略 (2) \(\dfrac{\sqrt{42}}{7}\)
    解析 (1)证明:连接\(AC\)交\(BD\)于点\(O\),连接\(HO\).
    \(∵\)四边形\(ABCD\)为菱形,点\(H\)是\(EB\)的中点,
    所以\(OH\)为\(△BDE\)的中位线.
    所以\(OH//DE\), \(O H=\dfrac{1}{2} D E\),而\(FC//DE\),\(FC=\dfrac{1}{2} DE\),
    所以\(OH//FC\),\(OH=FC\),
    \(∴\)四边形\(CFHO\)为平行四边形,\(∴FH//CO\),
    \(∵DE⊥\)平面\(ABCD\),\(CO⊂\)平面\(ABCD\),
    \(∴DE⊥CO\).
    又\(∵CO⊥BD\),\(ED\cap BD=D\),
    \(∴CO⊥\)平面\(EDB\),
    \(∴FH⊥\)平面\(EDB\)
    (2)解:因为\(OB,OC,OH\)两两垂直,
    故以点\(O\)为坐标原点,分别 \(\overrightarrow{O B}, \overrightarrow{O C}, \overrightarrow{O H}\)的方向为\(x\)轴,\(y\)轴,\(z\)轴的正方向,
    建立如图所示的空间直角坐标系\(O-xyz\).
    image.png
    由题意得 \(A(0,-\sqrt{3}, 0)\),\(C(0,\sqrt{3},0)\),\(B(1,0,0)\),\(E(-1,0,2)\),
    则 \(\overrightarrow{E B}=(2,0,-2)\), \(\overrightarrow{A B}=(1, \sqrt{3}, 0)\), \(\overrightarrow{B C}=(-1, \sqrt{3}, 0)\).
    设平面\(AEB\)的一个法向量为\(\vec{m}=(x,y,z)\),
    则 \(\left\{\begin{array}{l} \vec{m} \cdot \overrightarrow{E B}=2 x-2 z=0 \\ \vec{m} \cdot \overrightarrow{A B}=x+\sqrt{3} y=0 \end{array}\right.\),取 \(\vec{m}=(3,-\sqrt{3}, 3)\),
    由第(1)问可知\(OC⊥\)平面\(DEB\),
    故平面\(DEB\)的一个法向量为\(\vec{n}=(0,1,0)\),
    所以 \(\cos \langle\vec{m}, \vec{n}\rangle=\dfrac{\vec{m} \cdot \vec{n}}{|\vec{m}| \cdot|\vec{n}|}=\dfrac{3 \times 0+(-\sqrt{3}) \times 1+3 \times 0}{\sqrt{9+3+9} \times \sqrt{0+1+0}}=-\dfrac{\sqrt{7}}{7}\),
    设二面角\(A-EB-D\)的平面角为\(θ\),
    则 \(\sin \theta=\sqrt{1-\cos ^{2}<\vec{m}, \vec{n}>}=\dfrac{\sqrt{42}}{7}\).
     

【题型2】空间角问题的综合题

【典题1】 如图,在四棱锥\(P-ABCD\)中,平面\(PAB⊥\)平面\(ABCD\),\(AD∥BC\),\(AB⊥AD\),\(AB⊥PA\),点\(E\)为\(BC\)上一点且\(BC=2AB=2AD=4BE\).
(1)求证:平面\(PED⊥\)平面\(PAC\);
(2)若直线\(PE\)与平面\(PAC\)所成的角的正弦值为 \(\dfrac{\sqrt{5}}{5}\),求二面角\(A-PC-D\)的余弦值.
image.png
解析 (1)证明:\(∵\)平面\(PAB⊥\)平面\(ABCD\),平面\(PAB∩\)平面\(ABCD=AB\),\(AB⊥PA\),
\(∴PA⊥\)平面\(ABCD\),又\(AB⊥AD\).
分别以\(AB\)、\(AD\)、\(AP\)为\(x\)轴、\(y\)轴、\(z\)轴,建立空间直角坐标系\(o-xyz\),
可得\(A(0,0,0)\),\(D(0,2,0)\),\(E(2,1,0)\),\(C(2,4,0)\),\(P(0,0,λ)(λ>0)\).
\(\therefore \overrightarrow{A C}=(2,4,0)\), \(\overrightarrow{A P}=(0,0, \lambda)\), \(\overrightarrow{D E}=(2,-1,0)\).
由 \(\overrightarrow{D E} \cdot \overrightarrow{A C}=4-4+0=0\), \(\overrightarrow{D E} \cdot \overrightarrow{A P}=0\),
\(∴DE⊥AC\)且\(DE⊥AP\),
\(∵AC\)、\(AP\)是平面\(PAC\)内的相交直线,\(∴ED⊥\)平面\(PAC\).
\(∵ED⊂\)平面\(PED\),
\(∴\)平面\(PED⊥\)平面\(PAC\);
(2)解:由(1)得平面\(PAC\)的一个法向量是 \(\overrightarrow{D E}=(2,-1,0)\),而 \(\overrightarrow{P E}=(2,1,-\lambda)\).
设直线\(PE\)与平面\(PAC\)所成的角为\(θ\),
则 \(|\sin \theta=| \cos <\overrightarrow{P E}, \overrightarrow{D E}>\mid=\dfrac{|\overrightarrow{P E} \cdot \overrightarrow{D E}|}{|\overrightarrow{P E}| \cdot|\overrightarrow{D E}|}=\dfrac{|4-1|}{\sqrt{5} \cdot \sqrt{5+\lambda^{2}}}=\dfrac{\sqrt{5}}{5}\),解得\(λ=±2\).
\(∵λ>0\),
\(∴λ=2\),可得\(P\)的坐标为\((0,0,2)\).
设平面\(PCD\)的一个法向量为\(\vec{n}=(x,y,z)\),
\(\overrightarrow{D C}==(2,2,0)\), \(\overrightarrow{D P}=(0,-2,2)\),
由 \(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{D C}=2 x+2 y=0 \\ \vec{n} \cdot \overrightarrow{D P}=-2 y+2 z=0 \end{array}\right.\),令\(x=1\),得\(\vec{n}=(1,-1,-1)\).
\(\therefore \cos <\vec{n}, \overrightarrow{D E}>=\dfrac{\vec{n} \cdot \overrightarrow{D E}}{|\vec{n}| \cdot|\overrightarrow{D E}|}=\dfrac{\sqrt{15}}{5}\).
由图形可得二面角\(A-PC-D\)的平面角是锐角,
\(∴\)二面角\(A-PC-D\)的平面角的余弦值为 \(\dfrac{\sqrt{15}}{5}\).
image.png
 

巩固练习

1如图.正四面体\(ABCD\)的顶点\(A\),\(B\),\(C\)分别在两两垂直的三条射线\(Ox\),\(Oy\),\(Oz\)上,则在下列命题中,错误的为(  )
image.png
 A.\(O-ABC\)是正三棱锥 \(\qquad \qquad \qquad \qquad\) B.二面角\(D-OB-A\)的平面角为 \(\dfrac{\pi}{3}\)
 C.直线\(AD\)与直线\(OB\)所成角为 \(\dfrac{\pi}{4}\) \(\qquad \qquad\) D.直线\(OD⊥\)平面\(ABC\)
 

2 四棱锥\(P-ABCD\)中,\(PA⊥\)平面\(ABCD\),四边形\(ABCD\)是矩形,且\(PA=AB=2\),\(AD=3\),\(E\)是线段\(BC\)上的动点,\(F\)是线段\(PE\)的中点.
  (Ⅰ)求证:\(PB⊥\)平面\(ADF\);
  (Ⅱ)若直线\(DE\)与平面\(ADF\)所成角为\(30°\),
  (1)求线段\(CE\)的长;(2)求二面角\(P-ED-A\)的余弦值.
image.png
 
 

参考答案

  1. 答案 \(B\)
    解析 正四面体\(ABCD\)的顶点\(A\),\(B\),\(C\)分别在两两垂直的三条射线\(Ox\),\(Oy\),\(Oz\)上,
    在\(A\)中,\(∵AC=AB=BC\),\(OA=OB=OC\),
    \(∴O-ABC\)是正三棱锥,故\(A\)正确;
    在\(B\)中,设\(OB=1\),则\(A(1,0,0)\),\(B(0,1,0)\),\(D(1,1,1)\),\(O(0,0,0)\),
    \(\overrightarrow{O D}=(1,1,1)\), \(\overrightarrow{O B}=(0,1,0)\),
    设平面\(OBD\)的法向量\(\vec{m}=(x,y,z)\),
    则 \(\left\{\begin{array}{l} \vec{m} \cdot \overrightarrow{O B}=y=0 \\ \vec{m} \cdot \overrightarrow{O D}=x+y+z=0 \end{array}\right.\),取\(x=1\),得\(\vec{m}=(1,0,-1)\),
    而平面\(OAB\)的法向量\(\vec{n}=(0,0,1)\),
    \(\cos \langle\vec{m}, \vec{n}\rangle=\dfrac{\vec{m} \cdot \vec{n}}{|\vec{m}| \cdot|\vec{n}|}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\),
    二面角\(D-OB-A\)的平面角为 \(\dfrac{\pi}{4}\),故\(B\)错误;
    在\(C\)中,设\(OB=1\),则\(A(1,0,0)\),\(B(0,1,0)\),\(D(1,1,1)\),\(O(0,0,0)\),
    \(\overrightarrow{A D}=(0,1,1)\), \(\overrightarrow{A D}=(0,1,1), \quad \overrightarrow{O B}=(0,1,0)\),
    \(\cos <\overrightarrow{A D}, \overrightarrow{O B}>=\dfrac{|\overrightarrow{A D} \cdot \overrightarrow{O B}|}{|\overrightarrow{A D}| \cdot|\overrightarrow{O B}|}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\),
    \(∴\)直线\(AD\)与直线\(OB\)所成角为 \(\dfrac{\pi}{4}\),故\(C\)正确;
    在\(D\)中,设\(OB=1\),则\(A(1,0,0)\),\(B(0,1,0)\),\(D(1,1,1)\),\(O(0,0,0)\),\(C(0,0,1)\),
    \(\overrightarrow{O D}=(1,1,1)\), \(\overrightarrow{A B}=(-1,1,0)\), \(\overrightarrow{A C}=(-1,0,1)\),
    \(\overrightarrow{O D} \cdot \overrightarrow{A B}=0\), \(\overrightarrow{O D} \cdot \overrightarrow{A C}=0\),\(∴OD⊥AB\),\(OD⊥AC\),
    \(∵AB∩AC=A\),\(∴\)直线\(OD⊥\)平面\(ABC\),故\(D\)正确.
    故选:\(B\).
    image.png

  2. 答案 (Ⅰ) 略 (Ⅱ)(1)略 (2) \(\dfrac{3 \sqrt{17}}{17}\)
    解析 (Ⅰ)证明:依题意,以点\(A\)为原点建立空间直角坐标系(如图),
    image.png
    可得\(A(0,0,0)\),\(B(2,0,0)\),\(C(2,3,0)\),\(D(0,3,0)\),\(E(2,y,0)\),F(1,m/2,1),\(P(0,0,2)\).
    \(\overrightarrow{P B}=(2,0,-2)\), \(\overrightarrow{A D}=(0,3,0)\), \(\overrightarrow{A F}=\left(1, \dfrac{m}{2}, 1\right)\),
    \(\overrightarrow{P B} \cdot \overrightarrow{A D}=0\), \(\overrightarrow{P B} \cdot \overrightarrow{A F}=0\),
    即\(PB⊥AD\),\(PB⊥AF\),\(AF∩AD=A\),所以\(PB⊥\)平面\(ADF\).
    (Ⅱ)解:(1)设\(\vec{n}=(x,y,z)\)为平面\(ADF\)的法向量,
    则 \(\left\{\begin{array}{l} \overrightarrow{A D} \cdot \vec{n}=3 y=0 \\ \overrightarrow{A F} \cdot \vec{n}=x+\dfrac{m}{2} y+z=0 \end{array}\right.\),
    不妨令\(v\),可得\(\vec{n}=(1,0,-1)\)为平面\(ADF\)的一个法向量,
    向量 \(\overrightarrow{D E}=(2, y-3,0)\)
    \(∵\)直线\(DE\)与平面\(ADF\)所成角为\(30°\),于是有 \(\cos \langle\vec{n} \cdot \overrightarrow{D E}\rangle=\dfrac{\vec{n} \cdot \overrightarrow{D E}}{|\vec{n}| \cdot|\overrightarrow{D E}|}=\dfrac{1}{2}\),
    所以 \(\dfrac{1 \times 2+0 \times(y-3)+0 \times(-1)}{\sqrt{1+0+1} \cdot \sqrt{2^{2}+(y-3)^{2}+0}}=\dfrac{1}{2}\),得\(y=1\),\(y=5\)(舍)
    \(E(2,1,0)\),\(C(2,3,0)\),线段\(CE\)的长为\(2\).
    (2)设\(\vec{n}=(a,b,c)\)为平面\(PED\)的法向量,
    \(\overrightarrow{P E}==(2,1,-2)\), \(\overrightarrow{P D}=(0,3,-2)\)
    则 \(\left\{\begin{array}{l} \overrightarrow{P E} \cdot \vec{m}=2 a+y-2 c=0 \\ \overrightarrow{P D} \cdot \vec{m}=3 b-2 c=0 \end{array}\right.\),
    不妨令\(a=2\),可得\(\vec{n}=(2,2,3)\)为平面\(ADF\)的一个法向量,
    又 \(\overrightarrow{A P}=(0,0,2)\)为平面\(ADE\)的一个法向量,
    \(∴\)二面角\(P-ED-A\)的余弦值为 \(\cos <\vec{n}, \overrightarrow{A P}>=\dfrac{\vec{n} \cdot \overrightarrow{A P}}{\vec{n} \cdot \overrightarrow{A P}}=\dfrac{3 \sqrt{17}}{17}\).
     

分层练习

【A组---基础题】

1 平面\(α\),\(β\)的法向量分别是 \(\overrightarrow{n_{1}}=(1,1,1)\), \(\overrightarrow{n_{2}}=(-1,0,-1)\),则平面\(α\),\(β\)所成角的正弦值是(  )
  A. \(\dfrac{\sqrt{3}}{3}\) \(\qquad \qquad\) B. \(\dfrac{1}{2}\) \(\qquad \qquad\) C. \(\dfrac{\sqrt{6}}{3}\) \(\qquad \qquad\) D. \(\dfrac{\sqrt{2}}{2}\)
 

2 在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,平面\(A_1 BD\)与平面\(ABCD\)所成二面角的正弦值为(  )
 A. \(\dfrac{\sqrt{3}}{2}\)\(\qquad \qquad\) B. \(\dfrac{\sqrt{2}}{2}\) \(\qquad \qquad\) C. \(\dfrac{\sqrt{6}}{3}\) \(\qquad \qquad\) D. \(\dfrac{1}{3}\)
 

3 若面\(α\)的法向量\(\vec{n}=(1,λ,1)\),面\(β\)的法向量\(\vec{m}=(2,-1,-2)\),两面夹角的正弦值为 \(\dfrac{\sqrt{34}}{6}\),则\(λ=\underline{\quad \quad}\).
 

4 如图,在三棱柱\(ABC-A_1 B_1 C_1\)中,\(AB\),\(AC\),\(AA_1\)两两互相垂直,\(AB=AC=AA_1\),\(M\),\(N\)分别是侧棱\(BB_1\),\(CC_1\)上的点,平面\(AMN\)与平面\(ABC\)夹角为 \(\dfrac{\pi}{6}\),则当\(|B_1 M|\)最小时\(∠AMB=\underline{\quad \quad}\).
image.png
 

5 如图,在棱长为\(2\)的正方体\(ABCD-A_1 B_1 C_1 D_1\)中,点\(E\)是棱\(D_1 D\)的中点,点\(F\)在棱\(B_1 B\)上,且满足\(B_1 F=2FB\).
 (1)求证:\(A_1 C_1⊥D_1 D\);
 (2)求平面\(AEF\)与平面\(AA_1 D_1 D\)所成锐二面角的余弦值.
image.png
 

6 如图,四棱锥\(P-ABCD\)的底面是正方形,\(PD⊥\)底面\(ABCD\),\(PD=DC\),\(E\)是\(PC\)的中点.
 (1)证明:平面\(PAB⊥\)平面\(PAD\);(2)求二面角\(P-AB-D\)的大小.
image.png
 
 

7 如图,在四棱锥\(P-ABCD\)中,底面\(ABCD\)是边长为\(2\)的菱形,\(∠ABC=60°\),\(△PAB\)为正三角形, \(P C=\sqrt{6}\),\(E\)为线段\(AB\)的中点.
 (1)证明:\(PE⊥\)平面\(ABCD\);
 (2)若 \(3 \overrightarrow{P M}=\overrightarrow{P D}\),求二面角\(M-EC-D\)的大小.
image.png
 
 

8 如图,菱形\(ABCD\)中\(∠BAD=60^∘\),把\(△BDC\)沿\(BD\)折起,使得点\(C\)至\(P\)处.
 (1)证明:平面\(PAC⊥\)平面\(ABCD\);
 (2)若\(PA\)与平面\(ABD\)所成角的余弦值为 \(\dfrac{\sqrt{3}}{3}\),求二面角\(B-PA-D\)的余弦值.
image.png
 
 

参考答案

  1. 答案 \(A\)
    解析 设向量 \(\overrightarrow{n_{1}}=(1,1,1)\), \(\overrightarrow{n_{2}}=(-1,0,-1)\)所成角为\(θ\),
    则 \(\cos \theta=\dfrac{\overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}}{\left|\overrightarrow{n_{1}}\right|\left|\overrightarrow{n_{2}}\right|}=\dfrac{-2}{\sqrt{3} \sqrt{2}}=-\dfrac{2}{\sqrt{6}}\),
    \(\therefore \sin \theta=\sqrt{1-\dfrac{2}{3}}=\dfrac{\sqrt{3}}{3}\),故选:\(A\).

  2. 答案 \(C\)
    解析 以\(D\)为原点,\(DA\)为\(x\)轴,\(DC\)为\(y\)轴,\(DD_1\)为\(z\)轴,建立空间直角坐标系,
    设正方体\(ABCD-A_1 B_1 C_1 D_1\)中棱长为\(1\),
    则\(A_1 (1,0,1)\),\(B(1,1,0)\),\(D(0,0,0)\), \(\overrightarrow{D A}_{1}=(1,0,1)\), \(\overrightarrow{D B}=(1,1,0)\),
    设平面\(A_1 BD\)的法向量\(\vec{n}=(x,y,z)\),
    则 \(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{D A_{1}}=x+z=0 \\ \vec{n} \cdot \overrightarrow{D B}=x+y=0 \end{array}\right.\),取\(x=1\),得\(\vec{n}=(1,-1,-1)\),
    平面\(ABCD\)的法向量\(\vec{m}=(0,0,1)\),
    设平面\(A_1 BD\)与平面\(ABCD\)所成二面角的平面角为\(α\),
    则 \(\cos \alpha=\dfrac{|\vec{m} \cdot \vec{n}|}{|\vec{m}| \cdot|\vec{n}|}=\dfrac{1}{\sqrt{3}}=\dfrac{\sqrt{3}}{3}\),
    \(\therefore \sin \alpha=\sqrt{1-\left(\dfrac{\sqrt{3}}{3}\right)^{2}}=\dfrac{\sqrt{6}}{3}\).
    \(∴\)平面\(A_1 BD\)与平面\(ABCD\)所成二面角的正弦值为 \(\dfrac{\sqrt{6}}{3}\).
    故选:\(C\).
    image.png

  3. 答案 \(\pm \sqrt{2}\)
    解析 设面\(α\)与面\(β\)的夹角为\(θ\),
    则 \(|\cos \theta=| \cos <\vec{n}, \vec{m}>|=| \dfrac{-\lambda}{\sqrt{2+\lambda^{2}} \cdot \sqrt{9}} \mid=\dfrac{|\lambda|}{3 \sqrt{2+\lambda^{2}}}\),
    所以 \(\sin 2 \theta=1-\cos 2 \theta=1-\dfrac{\lambda^{2}}{9\left(2+\lambda^{2}\right)}=\dfrac{34}{36}\),解得 \(\lambda=\pm \sqrt{2}\).

  4. 答案 \(\dfrac{\pi}{3}\)
    解析 以点\(A\)为坐标原点,建立空间直角坐标系如图所示,
    image.png
    设\(CN=b\),\(BM=a\),
    则\(N(0,1,b)\),\(M(1,0,a)\),\(A(0,0,0)\),\(B(1,0,0)\),
    所以 \(\overrightarrow{A M}=(1,0, a)\), \(\overrightarrow{A N}=(0,1, b)\),
    设平面\(AMN\)的法向量为\(\vec{n}=(x,y,z)\),
    则 \(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{A M}=x+a z=0 \\ \vec{n} \cdot \overrightarrow{A N}=y+b z=0 \end{array}\right.\),令\(z=1\),则\(\vec{n}=(-a,-b,1)\),
    平面\(ABC\)的法向量为\(\vec{m}=(0,0,1)\),
    因为平面\(AMN\)与平面\(ABC\)夹角为 \(\dfrac{\pi}{6}\),
    所以 \(\cos <\vec{m}, \vec{n}>=\dfrac{|\vec{m} \cdot \vec{n}|}{|\vec{m}||\vec{n}|}=\dfrac{1}{\sqrt{a^{2}+b^{2}+1}}=\dfrac{\sqrt{3}}{2}\),
    化简可得\(3a^2+3b^2=1\),
    当\(|B_1 M|\)最小时,则\(b=0\), \(B M=a=\dfrac{\sqrt{3}}{3}\),
    所以 \(\tan \angle A M B=\dfrac{A B}{B M}=\dfrac{1}{\dfrac{\sqrt{3}}{3}}=\sqrt{3}\),
    则 \(\angle A M B=\dfrac{\pi}{3}\).

  5. 答案 (1)略 (2) \(\dfrac{2}{7}\)
    解析 证明:(1)\(∵\)在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(D_1 D⊥\)平面\(A_1 B_1 C_1 D_1\),\(A_1 C_1⊂\)平面\(A_1 B_1 C_1 D_1\),
    \(∴A_1 C_1⊥D_1 D\).
    (2)如图,以\(D\)为原点,\(DA\),\(DC\),\(DD_1\)分别为\(x,y,z\)轴,建立空间直角坐标系,
    image.png
    则\(A(2,0,0)\),\(E(0,0,1)\), \(, F\left(2,2, \dfrac{2}{3}\right)\),\(B(2,2,0)\),
    \(\therefore \overrightarrow{A E}=(-2,0,1)\), \(\overrightarrow{A F}=\left(0,2, \dfrac{2}{3}\right)\),\(\overrightarrow{A B}=(0,2,0)\)
    设\(\vec{n}=(x,y,z)\)是平面\(AEF\)的一个法向量,
    则 \(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{A E}=-2 x+z=0 \\ \vec{n} \cdot \overrightarrow{A F}=2 y+\dfrac{2}{3} z=0 \end{array}\right.\),取\(z=6\),得\(\vec{n}=(3,-2,6)\),
    \(∵AB⊥\)平面\(AA_1 D_1 D\),
    \(: \overrightarrow{A B}=(0,2,0)\)是平面\(AA_1 D_1 D\)的一个法向量,
    \(\therefore \cos <\overrightarrow{A B}, \vec{n}>=\dfrac{\overrightarrow{A B} \cdot \vec{n}}{|\overrightarrow{A B}| \cdot|\vec{n}|}=\dfrac{-4}{2 \sqrt{49}}=-\dfrac{2}{7}\),
    \(∴\)平面\(AEF\)与平面\(AA_1 D_1 D\)所成锐二面角的余弦值为 \(\dfrac{2}{7}\).

  6. 答案 (1)略 (2)\(45^∘\)
    解析 证明:(1)\(∵\)四棱锥\(P-ABCD\)的底面是正方形,\(PD⊥\)底面\(ABCD\),\(PD=DC\),\(E\)是\(PC\)的中点.
    \(∴AB⊥AD\),\(AB⊥PD\),
    又\(AD\cap PD=D\),\(∴AB⊥\)平面\(PAD\),
    \(∵AB⊂\)平面\(PAB\),\(∴\)平面\(PAB⊥\)平面\(PAD\).
    解:(2)以\(D\)为原点,\(DA\)为\(x\)轴,\(DC\)为\(y\)轴,\(DP\)为\(z\)轴,建立空间直角坐标系,
    设\(PD=DC=AD=2\),
    则\(A(2,0,0)\),\(P(0,0,2)\),\(D(0,0,0)\),\(B(2,2,0)\),
    \(\overrightarrow{A P}=(-2,0,2)\), \(\overrightarrow{A B}=(0,2,0)\),
    设平面 \(PAB\)的法向量\(\vec{n}=(x,y,z)\),
    则 \(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{A P}=-2 x+2 z=0 \\ \vec{n} \cdot \overrightarrow{A B}=2 y=0 \end{array}\right.\),取\(x=1\),得 \(\vec{n}=(1,0,1)\),
    平面\(ABD\)的法向量 \(\vec{m}=\left( 0, 0, 1\right)\),
    设二面角\(P-AB-D\)的大小为\(θ\),
    则 \(\cos \theta=\dfrac{|\vec{m} \cdot \vec{n}|}{|\vec{m}| \cdot|\vec{n}|}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\),\(θ=45^∘\),
    \(∴\)二面角\(P-AB-D\)的大小为\(45^∘\).
    image.png

  7. 答案 (1)略 (2)\(60°\)
    解析 (1)证明:连接\(CE\),
    \(∵△PAB\)是边长为\(2\)的正三角形,且\(E\)是\(AB\)中点, \(\therefore P E=\sqrt{3}\)
    又\(∵ABCD\)是边长为\(2\)的菱形,\(∠ABC=60°\),
    \(∴△ABC\)是正三角形,\(CE=\sqrt{3}\),
    又\(∵PC=\sqrt{6}\),\(∴PC^2=PE^2+CE^2\),即\(PE⊥CE\),
    又\(PE⊥AB\),\(CE∩AB=E\),
    \(∴PE⊥\)平面\(ABCD\).
    (2)解:由(1)可得:以\(E\)为原点,分别以 \(\overrightarrow{E B}, \overrightarrow{E C}, \overrightarrow{E P}\)为\(x,y,z\)轴的正方向,建立空间直角坐标系\(E-xyz\),
    则\(E(0,0,0)\),\(B(1,0,0)\),\(P(0,0,\sqrt{3})\),\(C(0,\sqrt{3},0)\),\(D(-2,\sqrt{3},0)\).
    设点\(M\)坐标为\((x,y,z)\),由 \(3 \overrightarrow{P M}=\overrightarrow{P D}\),得 \(3(x, y, z-\sqrt{3})=(-2, \sqrt{3},-\sqrt{3})\),
    \(\therefore M\left(-\dfrac{2}{3}, \dfrac{\sqrt{3}}{3}, \dfrac{2 \sqrt{3}}{3}\right)\),
    \(\therefore \overrightarrow{E M}=\left(-\dfrac{2}{3}, \dfrac{\sqrt{3}}{3}, \dfrac{2 \sqrt{3}}{3}\right)\),\(\overrightarrow{E C}=(0, \sqrt{3}, 0)\),
    设平面\(CEM\)的法向量为\(\vec{n}=(x,y,z)\),
    则 \(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{E M}=-\dfrac{2}{3} x+\dfrac{\sqrt{3}}{3} y+\dfrac{2 \sqrt{3}}{3} z=0 \\ \vec{n} \cdot \overrightarrow{E C}=\sqrt{3} y=0 \end{array}\right.\),取\(z=1\),解得 \(\vec{m}=(\sqrt{3}, 0,1)\).
    \(∵PE⊥\)平面\(ABCD\),\(∴\)平面\(ABCD\)的法向量 \(\vec{m}=(0,0,1)\),
    \(\therefore|\cos <\vec{n}, \vec{m}>|=\dfrac{|\vec{n} \cdot \vec{m}|}{|\vec{n}| \cdot|\vec{m}|}=\dfrac{1}{2}\),
    \(∴\)二面角\(M-EC-D\)的大小为\(60°\).

  8. 答案 (1)略 (2) \(\dfrac{1}{3}\)
    解析 (1)证明:设\(AC\cap BD\)于\(O\),连接\(PO\),
    在菱形\(ABCD\)中,\(O\)为\(BD\)的中点,且\(BD⊥AC\),
    \(∵PB=PD\),\(∴BD⊥PO\),
    \(∴PO∩AC=O\),\(∴BD⊥\)平面\(PAC\) ,
    \(∵BD⊂\)平面\(ABCD\),
    \(∴\)平面\(PAC⊥\)平面\(ABCD\);
    (2)在平面\(PAC\)内,作\(OM⊥AC\),以\(O\)为坐标原点,\(OA,OB,OM\)为\(x,y,z\)轴,建立空间直角坐标系,如图,
    image.png
    设\(PB=PD=AB=AD=2\),则\(OA=OP=\sqrt{3}\),\(OR=1\),
    由(1)知平面\(PAC⊥\)平面\(ABCD\),
    \(∴∠PAO\)是\(PA\)与平面\(ABCD\)所成角,
    \(\therefore \cos \angle P A O=\dfrac{\sqrt{3}}{3}\),可得 \(P\left(\dfrac{\sqrt{3}}{3}, 0, \dfrac{2 \sqrt{6}}{3}\right)\),
    由\(A(\sqrt{3},0,0)\),\(B(0,1,0)\),\(D(0,-1,0)\),
    \(\therefore \overrightarrow{A D}=(-\sqrt{3},-1,0)\), \(\overrightarrow{A B}=(-\sqrt{3}, 1,0)\), \(\overrightarrow{A P}=\left(-\dfrac{2 \sqrt{3}}{3}, 0, \dfrac{2 \sqrt{6}}{3}\right),\),
    设平面\(PAB\)的法向量为\(\vec{m}=(x,y,z)\),
    则 \(\left\{\begin{array}{l} \vec{m} \cdot \overrightarrow{A B}=-\sqrt{3} x+y=0 \\ \vec{m} \cdot \overrightarrow{A P}=-\dfrac{2 \sqrt{3}}{3} x+\dfrac{2 \sqrt{6}}{3} z=0 \end{array}\right.\),取\(z=1\),得 \(\vec{m}=(\sqrt{2}, \sqrt{6}, 1)\),
    设平面\(PAD\)的法向量为\(\vec{n}=(a,b,c)\),
    则 \(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{A D}=-\sqrt{3} a-b=0 \\ \vec{n} \cdot \overrightarrow{A P}=-\dfrac{2 \sqrt{3}}{3} a+\dfrac{2 \sqrt{6}}{3} c=0 \end{array}\right.\),取\(c=1\),得 \(\vec{n}=(\sqrt{2},-\sqrt{6}, 1)\),
    \(\therefore \cos \langle\vec{m}, \vec{n}\rangle=\dfrac{\vec{m} \cdot \vec{n}}{|\vec{m}| \cdot|\vec{n}|}=\dfrac{2-6+1}{\sqrt{2+6+1} \cdot \sqrt{2+6+1}}=-\dfrac{1}{3}\),
    由图知二面角\(B-PA-D\)为锐角,故其余弦值为 \(\dfrac{1}{3}\).
     

【B组---提高题】

1 如图,三棱锥\(V-ABC\)的侧棱长都相等,底面\(ABC\)与侧面\(VAC\)都是以\(AC\)为斜边的等腰直角三角形,\(E\)为线段\(AC\)的中点,\(F\)为直线\(AB\)上的动点,若平面\(VEF\)与平面\(VBC\)所成锐二面角的平面角为\(θ\),则\(\cosθ\)的最大值是(  )
image.png
 A. \(\dfrac{\sqrt{3}}{3}\) \(\qquad \qquad\) B. \(\dfrac{2}{3}\) \(\qquad \qquad\) C. \(\dfrac{\sqrt{5}}{3}\) \(\qquad \qquad\) D. \(\dfrac{\sqrt{6}}{3}\)
 

2 在底面为锐角三角形的直三棱柱\(ABC-A_1 B_1 C_1\)中,\(D\)是棱\(BC\)的中点,记直线\(B_1 D\)与直线\(AC\)所成角为\(θ_1\),直线\(B_1 D\)与平面\(A_1 B_1 C_1\)所成角为\(θ_2\),二面角\(C_1-A_1 B_1-D\)的平面角为\(θ_3\),则(  )
  A.\(θ_2<θ_1,θ_2<θ_3\) \(\qquad \qquad\) B.\(θ_2>θ_1,θ_2<θ_3\) \(\qquad \qquad\) C.\(θ_2<θ_1,θ_2>θ_3\) \(\qquad \qquad\) D.\(θ_2>θ_1,θ_2>θ_3\)
 

3如图所示,在等边\(△ABC\)中,\(AB=6\),\(M\),\(N\)分别是\(AB\),\(AC\)上的点,且\(AM=AN=4\),\(E\)是\(BC\)的中点,\(AE\)交\(MN\)于点\(F\).以\(MN\)为折痕把\(△AMN\)折起,使点\(A\)到达点\(P\)的位置\((0<∠PFE<π)\),连接\(PB,PE,PC\).
image.png
(1)证明:\(MN⊥PE\);
(2)设点\(P\)在平面\(ABC\)内的射影为点\(Q\),若二面角\(P-MN-B\)的大小为 \(\dfrac{2}{3} \pi\),求直线\(QC\)与平面\(PBC\)所成角的正弦值.
 
 
 

参考答案

  1. 答案 \(D\)
    解析 由底面\(ABC\)与侧面\(VAC\)都是以\(AC\)为斜边的等腰直角三角形,
    得\(Rt△ABC≌Rt△AVC\),\(∴VA=VC=BA=BC\).
    设\(VA=VC=BA=BC=2\),
    由\(E\)为线段\(AC\)的中点,可得 \(V E=E B=\sqrt{2}\).
    由\(VE^2+BE^2=VB^2\),可得\(VE⊥EB\).
    以\(E\)为坐标原点,分别以\(EB\),\(EC\),\(EV\)所在直线为\(x,y,z\)轴建立空间直角坐标系.
    则\(C(0,\sqrt{2},0)\),\(B(\sqrt{2},0,0)\),\(V(0,0,\sqrt{2})\),设\(F(x,x-\sqrt{2},0)\),
    \(\overrightarrow{V C}=(0, \sqrt{2},-\sqrt{2})\), \(\overrightarrow{V B}=(\sqrt{2}, 0,-\sqrt{2})\),
    \(\overrightarrow{E V}=(0,0, \sqrt{2})\), \(\overrightarrow{V F}=(x, x-\sqrt{2},-\sqrt{2})\).
    设平面\(VBC\)的一个法向量为\(\vec{m}=(x,y,z)\),
    由 \(\left\{\begin{array}{l} \vec{m} \cdot \overrightarrow{V C}=\sqrt{2} y-\sqrt{2} z=0 \\ \vec{m} \cdot \overrightarrow{V B}=\sqrt{2} x-\sqrt{2} z=0 \end{array}\right.\),取\(x=1\),得\(\vec{m}=(1,1,1)\);
    设平面\(VEF\)的一个法向量为\(\vec{n}=(x_1,y_1,z_1)\),
    由 \(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{E V}=\sqrt{2} z_{1}=0 \\ \vec{n} \cdot \overrightarrow{V F}=x \cdot x_{1}+(x-\sqrt{2}) y_{1}-\sqrt{2} z_{1}=0 \end{array}\right.\),取\(y_1=1\),得 \(\vec{n}=\left(\dfrac{\sqrt{2}}{x}-1,1,0\right)\).
    平面\(VEF\)与平面\(VBC\)所成锐二面角的平面角为\(θ\),
    则 \(\cos \theta=\dfrac{\vec{m} \cdot \vec{n}}{|\vec{m}| \cdot|\vec{n}|}=\dfrac{\dfrac{\sqrt{2}}{x}}{\sqrt{3} \cdot \sqrt{\dfrac{2}{x^{2}}-\dfrac{2 \sqrt{2}}{x}+2}}=\dfrac{\sqrt{2}}{\sqrt{6 x^{2}-6 \sqrt{2} x+6}}\).
    令 \(f(x)=6 x^{2}-6 \sqrt{2} x+6=6\left(x-\dfrac{\sqrt{2}}{2}\right)^{2}+3\).
    当 \(x=\dfrac{\sqrt{2}}{2}\)时, \(f(x)_{\min }=3\).\(∴\cosθ\)的最大值为 \(\dfrac{\sqrt{2}}{\sqrt{3}}=\dfrac{\sqrt{6}}{3}\).
    故选:\(D\).
    image.png

  2. 答案 \(A\)
    解析 由选项可知,角\(θ_1\)与\(θ_2\),\(θ_2\)与\(θ_3\)的大小确定,且三棱柱的底面为锐角三角形.
    \(∴\)设三棱柱\(ABC-A_1 B_1 C_1\)是棱长为\(2\)的正三棱柱,取\(D\)是\(BC\)中点,
    以\(A\)为原点,在平面\(ABC\)中,过\(A\)作\(AC\)的垂线为\(x\)轴,\(AC\)为\(y\)轴,\(AA_1\)为\(z\)轴,建立空间直角坐标系,
    则\(A(0,0,0)\),\(A_1 (0,0,2)\), \(B_{1}(\sqrt{3}, 1,2)\),\(C(0,2,0)\), \(D\left(\dfrac{\sqrt{3}}{2}, \dfrac{3}{2}, 0\right)\),
    \(\overrightarrow{A C}=(0,2,0)\), \(\overrightarrow{B_{1} D}=\left(-\dfrac{\sqrt{3}}{2}, \dfrac{1}{2},-2\right)\), \(\overrightarrow{A_{1} B_{1}}=(\sqrt{3}, 1,0)\),
    \(∵\)直线\(B_1 D\)与直线\(AC\)所成的角为\(θ_1\),
    \(\therefore \cos \theta_{1}=\dfrac{\left|\overrightarrow{B_{1} D} \cdot \overrightarrow{A C}\right|}{\left|\overrightarrow{B_{1} D}\right| \cdot|\overrightarrow{A C}|}=\dfrac{2 \times \dfrac{1}{2}}{2 \cdot \sqrt{5}}=\dfrac{\sqrt{5}}{10}\),
    \(∵\)直线\(B_1 D\)与平面\(A_1 B_1 C_1\)所成的角为\(θ_2\),平面\(A_1 B_1 C_1\)的法向量\(\vec{n}=(0,0,1)\),
    \(\therefore \sin \theta_{2}=\dfrac{\left|\overrightarrow{B_{1} D} \cdot \vec{n}\right|}{\left|\overrightarrow{B_{1} D}\right| \cdot|\vec{n}|}=\dfrac{|-2|}{\sqrt{5} \cdot 1}=\dfrac{2}{\sqrt{5}}\),
    \(\therefore \cos \theta_{2}=\sqrt{1-\left(\dfrac{2}{\sqrt{5}}\right)^{2}}=\dfrac{\sqrt{5}}{5}\),
    设平面\(A_1 B_1 D\)的法向量\(\vec{m}=(x,y,z)\),
    由 \(\left\{\begin{array}{l} \vec{m} \cdot \overrightarrow{A_{1} B_{1}}=\sqrt{3} x+y=0 \\ \vec{m} \cdot \overrightarrow{B_{1} D}=-\dfrac{\sqrt{3}}{2} x+\dfrac{1}{2} y-2 z=0 \end{array}\right.\),取\(x=\sqrt{3}\),得 \(\vec{m}=\left(\sqrt{3},-3,-\dfrac{3}{2}\right)\),
    \(∵\)二面角\(C_1-A_1 B_1-D\)的平面角为\(θ_3\),
    \(\therefore \cos \theta_{3}=\dfrac{|\vec{m} \cdot \vec{n}|}{|\vec{m}| \cdot|\vec{n}|}=\dfrac{\dfrac{3}{2}}{\sqrt{\dfrac{57}{4}} \cdot 1}=\dfrac{\sqrt{57}}{19}\).
    且\(θ_1,θ_2\)与\(θ_3\)均为锐角,结合余弦函数在 \(\left[0, \dfrac{\pi}{2}\right]\)上为减函数,则\(θ_2<θ_1,θ_2<θ_3\),
    故选:\(A\).
    image.png

  3. 答案 (1)略 (2) \(\dfrac{2 \sqrt{3}}{7}\)
    解析 (1)证明:因为\(△ABC\)是等边三角形,\(E\)是\(BC\)的中点,所以\(AE⊥BC\),
    因为\(AM=AN=4\),所以\(MN//BC\),所以\(MN⊥AE\),
    可得\(MN⊥PF\),\(MN⊥FE\),
    又\(PF\cap FE=F\),所以\(MN⊥\)平面\(PFE\),
    又\(PE⊂\)平面\(PFE\),所以\(MN⊥PE\).
    (2)解:因为\(MN⊥PF\),\(MN⊥FE\),
    所以二面角\(P-MN-B\)的平面角为\(∠PFE\),
    所以\(∠PFE=\dfrac{2}{3} \pi\),可得\(∠PFA=\dfrac{1}{3} \pi\),
    由第(1)问知,\(MN⊥\)平面\(PFE\),\(MN⊂\)平面\(ABC\),
    所以平面\(ABC⊥\)平面\(PFE\),
    又因为平面\(PFE∩\)平面\(ABC=AE\),
    所以点\(P\)在平面\(ABC\)内的射影\(Q\)在\(AE\)上,
    因为 \(P F=2 \sqrt{3}\),所以 \(Q F=\sqrt{3}\),\(PQ=3\),
    过\(F\)作直线\(l//PQ\)交\(PE\)于点\(K\),以\(F\)为坐标原点,
    以 \(\overrightarrow{F M}, \overrightarrow{F E}, \overrightarrow{F K}\)的方向分别为\(x,y,z\)轴的正方向,
    建立如图所示的空间直角坐标系,
    image.png
    \(P(0,-\sqrt{3},3)\),\(C(-3,\sqrt{3},0)\),\(E(0,\sqrt{3},0)\),\(Q(0,-\sqrt{3},0)\),
    \(\overrightarrow{Q C}=(-3,2 \sqrt{3}, 0)\) ,\(\overrightarrow{P C}=(-3,2 \sqrt{3},-3)\), \(\overrightarrow{P E}=(0,2 \sqrt{3},-3)\),
    设平面\(PBC\)的法向量为\(\vec{n}=(x,y,z)\),
    则 \(\left\{\begin{array}{c} \vec{n} \cdot \overrightarrow{P C}=-3 x+2 \sqrt{3} y-3 z=0 \\ \vec{n} \cdot \overrightarrow{P E}=2 \sqrt{3} y-3 z=0 \end{array}\right.\),令\(z=2\),可得 \(\vec{n}=(0, \sqrt{3}, 2)\),
    所以 \(\cos \langle\overrightarrow{Q C}, \vec{n}\rangle=\dfrac{6}{\sqrt{7} \times \sqrt{21}}=\dfrac{2 \sqrt{3}}{7}\),
    所以直线\(QC\)与平面\(PBC\)所成角的正弦值为 \(\dfrac{2 \sqrt{3}}{7}\).
     

【C组---拓展题】

1 如图所示,在正三棱台\(ABC-A_1 B_1 C_1\)中, \(A B=3 A A_{1}=\dfrac{3}{2} A_{1} B_{1}=3\),记侧面\(ABB_1 A_1\)与底面\(ABC\),侧面\(ABB_1 A_1\)与侧面\(BCC_1 B_1\),以及侧面\(ABB_1 A_1\)与截面\(A_1 BC\)所成的锐二面角的平面角分别为\(α,β,γ\),则(  )
image.png
 A.\(γ<β=α\) \(\qquad \qquad\) B.\(β=α<γ\) \(\qquad \qquad\) C.\(β<α<γ\)\(\qquad \qquad\) D.\(α<β<γ\)
 

2 如图,在圆锥\(SO\)中,\(A\),\(B\)是\(⊙O\)上的动点,\(BB'\)是\(⊙O\)的直径,\(M\),\(N\)是\(SB\)的两个三等分点,\(∠AOB=θ(0<θ<π)\),记二面角\(N-OA-B\),\(M-AB'-B\)的平面角分别为\(α\),\(β\),若\(α≤β\),则\(θ\)的最大值是(  )
image.png
 A. \(\dfrac{5 \pi}{6}\) \(\qquad \qquad\) B. \(\dfrac{2 \pi}{3}\) \(\qquad \qquad\) C. \(\dfrac{\pi}{2}\) \(\qquad \qquad\) D. \(\dfrac{\pi}{4}\)
 

3折纸与数学有着千丝万缕的联系,吸引了人们的广泛兴趣.因\(A4\)纸的长宽比 \(\sqrt{2}: 1\)称为白银分割比例,故\(A4\)纸有一个白银矩形的美称.现有一张如图\(1\)所示的\(A4\)纸\(EFCH\),\(EF:EH=\sqrt{2}: 1\).\(A,B,C,D\)分别为\(EF\),\(FG\),\(GH\),\(HE\)的中点,将其按折痕\(AB\),\(BC\),\(CD\),\(DA\),\(AC\)折起(如图\(2\)),使得\(E,F,G,H\)四点重合,重合后的点记为\(S\),折得到一个如图\(3\)所示的三棱锥\(D-ABC\).记\(O\)为\(AC\)的中点,在\(△SOB\)中,\(SP\)为\(BO\)边上的高.
(1)求证:\(SP∥\)平面\(ACD\);
(2)若\(M,N\)分别是棱\(AB\),\(BC\)上的动点,且\(AM=BN\).当三棱锥\(B-DMN\)的体积最大时,求平面\(DAB\)与平面\(DMN\)所成锐二面角的余弦值.
image.png
 
 
 

参考答案

  1. 答案 \(B\)
    解析 如图,设底面三角形\(ABC\)的外心为\(O\),
    以\(O\)为坐标原点,以\(OB\)所在直线为\(x\)轴,以过\(O\)平行于\(AC\)的直线为\(y\)轴,以过\(O\)垂直于底面\(ABC\)的直线为z轴建立空间直角坐标系,
    image.png
    \(∵A B=3 A A_{1}=\dfrac{3}{2} A_{1} B_{1}=3\),
    \(\therefore B(\sqrt{3}, 0,0)\), \(B_{1}\left(\dfrac{2 \sqrt{3}}{3}, 0, \dfrac{\sqrt{6}}{3}\right)\), \(C\left(-\dfrac{\sqrt{3}}{2}, \dfrac{3}{2}, 0\right)\), \(A_{1}\left(-\dfrac{\sqrt{3}}{3},-1, \dfrac{\sqrt{6}}{3}\right)\),
    \(\overrightarrow{B B}_{1}==\left(-\dfrac{\sqrt{3}}{3}, 0, \dfrac{\sqrt{6}}{3}\right)\), \(\overrightarrow{B A_{1}}=\left(-\dfrac{4 \sqrt{3}}{3},-1, \dfrac{\sqrt{6}}{3}\right)\), \(\overrightarrow{B C}==\left(-\dfrac{3 \sqrt{3}}{2}, \dfrac{3}{2}, 0\right)\),
    设平面\(ABB_1 A_1\)的一个法向量为\(\vec{n}=(x,y,z)\),
    由 \(\left\{\begin{array}{l} \vec{n} \cdot \overrightarrow{B B}_{1}=-\dfrac{\sqrt{3}}{3} x+\dfrac{\sqrt{6}}{3} z=0 \\ \vec{n} \cdot \overrightarrow{B A_{1}}=-\dfrac{4 \sqrt{3}}{3} x-y+\dfrac{\sqrt{6}}{3} z=0 \end{array}\right.\),取\(x=\sqrt{2}\),得 \(\vec{n}=(\sqrt{2},-\sqrt{6}, 1)\);
    平面\(ABC\)的一个法向量为\(\vec{α}=(0,0,1)\);
    设平面\(BCC_1 B_1\)的一个法向量为\(\vec{β} =(x_1,y_1,z_1)\),
    由 \(\left\{\begin{array}{l} \vec{\beta} \cdot \overrightarrow{B B_{1}}=-\dfrac{\sqrt{3}}{3} x_{1}+\dfrac{\sqrt{6}}{3} z_{1}=0 \\ \vec{\beta} \cdot \overrightarrow{B C}=-\dfrac{3 \sqrt{3}}{2} x_{1}+\dfrac{3}{2} y_{1}=0 \end{array}\right.\),取 \(x_{1}=\sqrt{2}\),得 \(\vec{\beta}=(\sqrt{2}, \sqrt{6}, 1)\);
    设平面\(A_1 BC\)的一个法向量为 \(\vec{\gamma}=\left(x_{2}, y_{2}, z_{2}\right)\),
    由 \(\left\{\begin{array}{l} \vec{\gamma} \cdot \overrightarrow{B A_{1}}=-\dfrac{4 \sqrt{3}}{3} x_{2}-y_{2}+\dfrac{\sqrt{6}}{3} z_{2}=0 \\ \vec{\gamma} \cdot \overrightarrow{B C}=-\dfrac{3 \sqrt{3}}{2} x_{2}+\dfrac{3}{2} y_{2}=0 \end{array}\right.\),取 \(y_{2}=\sqrt{3}\),得 \(\vec{\gamma}=\left(1, \sqrt{3}, \dfrac{7 \sqrt{2}}{2}\right)\).
    \(\therefore \cos \alpha=|\cos <\vec{n}, \vec{\alpha}>|=\left|\dfrac{\vec{n} \cdot \vec{\alpha}}{|\vec{n}||\vec{\alpha}|}\right|=\dfrac{1}{3 \times 1}=\dfrac{1}{3},\),
    \(\cos \beta=|\cos <\vec{n}, \vec{\beta}>|=\left|\dfrac{\vec{n} \cdot \vec{\beta}}{|\vec{n}||\vec{\beta}|}\right|=\dfrac{|2-6+1|}{3 \times 3}=\dfrac{1}{3}\);
    \(\cos \gamma=|\cos <\vec{n}, \vec{\gamma}>|=\left|\dfrac{\vec{n} \cdot \vec{\gamma}}{|\vec{n}| \vec{\gamma} \mid}\right|=\dfrac{\left|\sqrt{2}-3 \sqrt{2}+\dfrac{7 \sqrt{2}}{2}\right|}{3 \times \dfrac{\sqrt{114}}{2}}=\dfrac{\sqrt{57}}{57}\).
    \(\because \cos \alpha=\cos \beta>\cos \gamma\),且余弦函数在 \(\left(0, \dfrac{\pi}{2}\right)\)上为减函数,
    \(∴β=α<γ\).
    故选:\(B\).

  2. 答案 \(B\)
    解析 设底面圆的半径为\(r\),\(OS=a\),以\(B'B\)所在直线为\(x\)轴,以垂直于\(B'B\)所在直线为\(y\)轴,以\(OS\)所在直线为\(z\)轴建立空间直角坐标系.
    则由\(∠AOB=θ(0<θ<π)\),可得:\(O(0,0,0)\),\(B(r,0,0)\),\(S(0,0,a)\), \(A(r \cos \theta, r \sin \theta, 0)\), \(B^{\prime}(-r, 0,0)\),
    \(∵M,N\)是\(SB\)的两个三等分点,
    \(\therefore M\left(\dfrac{r}{3}, 0, \dfrac{2 a}{3}\right)\), \(N\left(\dfrac{2 r}{3}, 0, \dfrac{a}{3}\right)\),
    \(\therefore \overrightarrow{O A}=(r \cos \theta, r \sin \theta, 0)\), \(\overrightarrow{O N}=\left(\dfrac{2 r}{3}, 0, \dfrac{a}{3}\right)\),
    设平面\(NOA\)的一个法向量为\(\vec{m} =(x_1,y_1,z_1)\),
    由 \(\left\{\begin{array}{l} \vec{m} \cdot \overrightarrow{O A}=x_{1} r \cos \theta+y_{1} r \sin \theta=0 \\ \vec{m} \cdot \overrightarrow{O N}=\dfrac{2 x_{1} r}{3}+\dfrac{a z_{1}}{3}=0 \end{array}\right.\),取\(x_1=1\),得 \(\vec{m}=\left(1,-\dfrac{\cos \theta}{\sin \theta},-\dfrac{2 r}{a}\right)\);
    平面\(OAB\)的一个法向量为\(\vec{n} =(0,0,1)\).
    由图可知,\(N-OA-B\)的平面角\(α\)为锐二面角, \(\therefore \cos \alpha=\dfrac{|\vec{m} \cdot \vec{n}|}{|\vec{m}| \cdot|\vec{n}|}=\dfrac{\left|\dfrac{2 r}{a}\right|}{\sqrt{1+\dfrac{\cos ^{2} \theta}{\sin ^{2} \theta}+\dfrac{4 r^{2}}{a^{2}}}}\);
    设平面\(B'AM\)的一个法向量为\(\vec{k} =(x_2,y_2,z_2)\),
    \(\overrightarrow{B^{\prime} A}=(r+r \cos \theta, r \sin \theta, 0)\), \(\overrightarrow{A M}=\left(\dfrac{r}{3}-r \cos \theta,-r \sin \theta, \dfrac{2 a}{3}\right)\).
    由 \(\left\{\begin{array}{l} \vec{k} \cdot \overrightarrow{B^{\prime}} A=x_{2} r+x_{2} r \cos \theta+y_{2} r \sin \theta=0 \\ \vec{k} \cdot \overrightarrow{A M}=\dfrac{x_{2} r}{3}-x_{2} r \cos \theta-y_{2} r \sin \theta+\dfrac{2 a z_{2}}{3}=0 \end{array}\right.\),
    取\(x_2=1\),得 \(\vec{k}=\left(1, \dfrac{-1-\cos \theta}{\sin \theta},-\dfrac{2 r}{a}\right)\);
    平面\(AB'B\)的一个法向量为\(\vec{h} =(0,0,1)\),
    由题意可知,\(M-AB'-B\)的平面角β为锐二面角,
    \(\therefore \cos \beta=\dfrac{|\vec{k} \cdot \vec{h}|}{|\vec{k}| \cdot|\vec{h}|}=\dfrac{\left|\dfrac{2 r}{a}\right|}{\sqrt{1+\left(\dfrac{-1-\cos \theta}{\sin \theta}\right)^{2}+\dfrac{4 r^{2}}{a^{2}}}}\).
    由二面角的范围可知\(0≤α≤β≤π\).
    即 \(\dfrac{\left|\dfrac{2 r}{a}\right|}{\sqrt{1+\dfrac{\cos ^{2} \theta}{\sin ^{2} \theta}+\dfrac{4 r^{2}}{a^{2}}}} \geq \dfrac{\left|\dfrac{2 r}{a}\right|}{\sqrt{1+\left(\dfrac{-1-\cos \theta}{\sin \theta}\right)^{2}+\dfrac{4 r^{2}}{a^{2}}}}\),
    化简可得 \(\cos \theta \leq-\dfrac{1}{2}\),且\(0<θ<π\),则 \(0<\theta \leq \dfrac{2 \pi}{3}\).
    \(∴θ\)的最大值是 \(\dfrac{2 \pi}{3}\).
    故选:\(B\).
    image.png

  3. 答案 (1)略 (2) \(\dfrac{3 \sqrt{5}}{10}\)
    解析 (1)证明:连接\(DO\).设\(EH=4a\),则 \(E F=4 \sqrt{2} a\),翻折后的\(BD=DE+FB=4a\).
    在\(△SAC\)中,\(SA=SC=2\sqrt{2} a\),\(AC=4a\),\(O\)为\(AC\)的中点,
    \(∴SO=2a\).
    又\(∵\)在\(△SOB\)中,\(BS=2a\),\(SP⊥BO\),
    \(∴P\)为\(BO\)的中点,
    \(∴SP∥DO\).
    \(∵SP⊄\)平面\(ACD\),\(DO⊂\)平面\(ACD\),
    \(∴SP∥\)平面\(ACD\).
    (2)解: \(\because V_{B-D M N}=V_{D-B M N}\)且三棱锥\(D-BMN\)的高为定值,
    \(\therefore S_{\triangle B M N}\)最大时,三棱锥\(B-DMN\)的体积取得最大值.
    设\(AM=BN=x(0≤x≤2\sqrt{3} a)\),
    \(\therefore S_{\triangle B M N}=\dfrac{1}{2} B M \cdot B N \cdot \sin \angle M B N=\dfrac{1}{2} x(2 \sqrt{3} a-x) \sin \angle M B N\)
    \(=\dfrac{1}{2}\left[-(x-\sqrt{3} a)^{2}+3 a^{2}\right] \sin \angle M B N\)
    又 \(\because \sin \angle M B N\)为定值.
    \(∴\)当 \(x=\sqrt{3} a\)时, \(S_{\triangle B M N}\)最大,即三棱锥\(B-DMN\)的体积最大.
    此时\(M\),\(N\)分别是\(AB\),\(BC\)上的中点,
    由(1)可得\(SP∥DO\),\(SP⊥BO\),\(∴DO⊥BO\).
    \(∵DA=DC\),\(BA=BC\),\(∴DO⊥AC\),\(BO⊥AC\).
    以\(O\)为坐标原点, \(\overrightarrow{O A}, \overrightarrow{O B}, \overrightarrow{O D}\)分别为\(x,y,z\)轴的正方向建立空间直角坐标系\(O-xyz\),
    则\(A(2a,0,0)\),\(B(0,2\sqrt{2} a,0)\),\(C(-2a,0,0)\),\(D(0,0,2\sqrt{2}a)\),\(M(a,\sqrt{2}a,0)\),
    \(N=(-a,\sqrt{2} a,0)\), \(\overrightarrow{D M}=(a, \sqrt{2} a,-2 \sqrt{2} a)\), \(\overrightarrow{N M}=(2 a, 0,0,)\), \(\overrightarrow{D A}=(2 a, 0,-2 \sqrt{2} a)\), \(\overrightarrow{A B}=(-2 a, 2 \sqrt{2} a, 0)\).
    设平面\(DMN\)的一个法向量为 \(\overrightarrow{n_{1}}=\left(x_{1}, y_{1}, z_{1}\right)\).
    \(\therefore\left\{\begin{array}{l} \overrightarrow{n_{1}} \cdot \overrightarrow{D M}=0 \\ \overrightarrow{n_{1}} \cdot N M=0 \end{array}\right.\),
    \(\therefore\left\{\begin{array}{l} a x_{1}+\sqrt{2} a y_{1}-2 \sqrt{2} a z_{1}=0 \\ 2 a x_{1}=0 \end{array}\right.\),取\(z_1=1\),则\(y_1=2\),\(x_1=0\),
    \(∴\)平面\(DMN\)的一个法向量为 \(\overrightarrow{n_{1}}=(0,2,1)\).
    设平面\(DAB\)的一个法向量为 \(\overrightarrow{n_{2}}=\left(x_{2}, y_{2}, z_{2}\right)\).
    \(\therefore\left\{\begin{array}{l} \overrightarrow{n_{2}} \cdot \overrightarrow{D A}=0 \\ \overrightarrow{n_{2}} \cdot \overrightarrow{A B}=0 \end{array}\right.\),
    \(\therefore\left\{\begin{array}{l} 2 a x_{2}+2 \sqrt{2} a z_{2}=0 \\ -2 a x_{2}+2 \sqrt{2} a y_{2}=0 \end{array}\right.\)取 \(x_{2}=\sqrt{2}\),则\(y_2=z_2=1\),
    \(∴\)平面\(DAB\)的一个法向量为 \(\overrightarrow{n_{2}}=(\sqrt{2}, 1,1)\).
    则 \(\cos <\overrightarrow{n_{1}}, \overrightarrow{n_{2}}>=\dfrac{\overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}}{\left|\overrightarrow{n_{1}}\right| \cdot\left|\overrightarrow{n_{2}}\right|}=\dfrac{3 \sqrt{5}}{10}\).
    所以平面\(DAB\)与平面\(DMN\)所成锐二面角的余弦值为 \(\dfrac{3 \sqrt{5}}{10}\).
    image.png

标签:1.4,overrightarrow,cdot,dfrac,sqrt,vec,平面,夹角,向量
From: https://www.cnblogs.com/zhgmaths/p/16651333.html

相关文章

  • 1.4.2(1) 用空间向量研究异面直线所成角和线面角
    \({\color{Red}{欢迎到学科网下载资料学习}}\)【基础过关系列】2022-2023学年高二数学上学期同步知识点剖析精品讲义(人教A版2019)\({\color{Red}{跟贵哥学数学,so\qua......
  • 1.4.1(2) 用空间向量研究直线、平面的平行
    \({\color{Red}{欢迎到学科网下载资料学习}}\)【基础过关系列】2022-2023学年高二数学上学期同步知识点剖析精品讲义(人教A版2019)\({\color{Red}{跟贵哥学数学,so\qua......
  • 1.3(1) 空间向量及其运算的坐标表示
    \({\color{Red}{欢迎到学科网下载资料学习}}\)【基础过关系列】2022-2023学年高二数学上学期同步知识点剖析精品讲义(人教A版2019)\({\color{Red}{跟贵哥学数学,so\qua......
  • MATLAB 时间读取变为向量格式效率对比
    %---数据时间读取1---%测试时间:39s%ticDataori_time=Cell_ss(:,1);da_time=zeros(length(Cell_ss),6);forj=1:length(Dataori_time)dm_time=Dataori_tim......
  • 1.4 充分条件与必要条件 1.5 全称量词和存在量词
    \({\color{Red}{欢迎到学科网下载资料学习}}\)【基础过关系列】2022-2023学年高一数学上学期同步知识点剖析精品讲义(人教A版2019)\({\color{Red}{跟贵哥学数学,so\qua......
  • Hive向量化使用规则
     经常听到有开发人员抱怨开启了向量化,查询速度怎么还这么慢,其实Hive开启向量化并不是万能的,它需要同时满足以下两个条件才能发挥出效果。1.表的存储类型    表存储......
  • 矩阵特征向量和特征值的含义
      矩阵特征向量和特征值的含义,几何物理意义    以下转自:https://www.zhihu.com/question/21874816             ......
  • 向量积
    https://www.bilibili.com/video/BV1p5411J7w1?spm_id_from=333.337.search-card.all.click&vd_source=1a0761fc8806f3feaeafa755f1e25872这个视频讲的很好,利用对称性揭示......
  • 基于Anacoda搭建虚拟环境cudnn6.0+cuda8.0+python3.6+tensorflow-gpu1.4.0
    !一定要查准cudnn,cuda,tensorflow-gpu对应的版本号再进行安装,且本文一切安装均在虚拟环境中完成。下文以笔者自己电脑为例,展开安装教程阐述(省略anaconda安装教程):1.查询电脑......
  • 向量距离与相似度函数
    假设当前有两个nn维向量xx和yy (除非特别说明,本文默认依此写法表示向量),可以通过两个向量之间的距离或者相似度来判定这两个向量的相近程度,显然两个向量之间距离越小,相似......