首页 > 其他分享 >4.3.1 等比数列的概念1(概念、通项公式)

4.3.1 等比数列的概念1(概念、通项公式)

时间:2022-12-05 18:59:24浏览次数:56  
标签:right 等比数列 4.3 dfrac therefore qquad left 通项

\({\color{Red}{欢迎到学科网下载资料学习 }}\)
[ 【基础过关系列】高二数学同步精品讲义与分层练习(人教A版2019)]
( https://www.zxxk.com/docpack/2875423.html)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

选择性第二册同步巩固,难度2颗星!

基础知识

等比数列的定义

如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,
这个常数叫做等比数列的公比,记为\(q\).
代数形式: \(\dfrac{a_n}{a_{n-1}}=q\)\(( q\)是常数,\(n≥2)\) 或 \(\dfrac{a_{n+1}}{a_n}=q\)\(( q\)是常数,\(n∈ N^* )\)
解释
(1) 公比是每一项与它的前一项的比,常数指的是与\(n\)无关;
(2) 等比数列中\(a_n≠0\) ,\(q≠0\)(否则数列会出现\(0\),不可能符合等边数列定义);
(3) \(\dfrac{a_n}{a_{n-1}}=2(n \geq 2) \Rightarrow\left\{a_n\right\}\)是公比为\(2\)的等比数列;
\(\qquad\)\(\dfrac{a_{n+1}}{a_n}=-3 \Rightarrow\left\{a_n\right\}\)是公比为\(-3\)的等比数列;
\(\qquad\)\(\dfrac{a_{n+1}}{a_n}=4 n \Rightarrow\left\{a_n\right\}\)不是等比数列.
【例】 以下数列是等比数列的\(\underline{\quad \quad}\).
(1)\(2,,4,8,16\);\(\qquad \qquad\) (2)\(a,a,a,,a\);\(\qquad \qquad\) (3)数列\(\{a_n \}\)满足 \(\dfrac{a_n}{a_{n-1}}=-2(n \geq 2)\).
答案 (1)(3).当\(a=0\)时,(2)不是等比数列
 

等比中项

若\(a\),\(b\) ,\(c\)成等比数列,则\(b\)称\(a\)与\(c\)的等差中项,则\(b^2=ac\);
证明 若\(a\),\(b\) ,\(c\)成等比数列,由等比数列的定义可得\(\dfrac{b}{a}=\dfrac{c}{b}\),即\(b^2=ac\).
【例】 若\(2x\)是\(1\)与\(x+3\)的等比中项,则\(x=\)\(\underline{\quad \quad}\) .
解 依题意得\(4x^2=1\cdot (x+3)\),解得\(x=1\)或 \(-\dfrac{3}{4}\).
 

通项公式

等比数列\(\{a_n \}\)的首项为\(a_1\),公比为\(q\),则\(a_n=a_1 q^{n-1}\).(由定义与累乘法可得)
解释
(1) 证明 由等比数列的定义可得, \(\dfrac{a_{n+1}}{a_n}=q\),
所以\(\dfrac{a_2}{a_1}=q\), \(\dfrac{a_3}{a_2}=q\), \(\dfrac{a_4}{a_3}=q\),\(…\)\(\dfrac{a_n}{a_{n-1}}=q(n \geq 2)\),
把以上\(n-1\)个等式累乘可得\(\dfrac{a_n}{a_1}=q^{n-1}(n \geq 2)\),即\(a_n=a_1 q^{n-1} (n≥2)\),
当\(n=1\)时,\(a_1=a_1 q^0=a_1 q^{1-1}\),即当\(n=1\)时上式也成立,
故\(a_n=a_1 q^{n-1} (n∈N^*)\).
以上的方法称之为累乘法.
(2) 通项公式\(a_n=a_1 q^{n-1}\)告诉你:已知等比数列的首项\(a_1\)与公比\(q\)可求得任何一项
(3)等比数列的通项公式可整理为\(a_n=a_1 q^{n-1}=\dfrac{a_1}{q} \cdot q^n\),当\(q>0\),且\(q≠1\)时,可以看成\(n\)的指数函数型函数.比如等比数列\(\{2^n\}\)的各点都在指数函数\(y=2^x\)上.
(4)偶数项的正负、奇数项的正负相同(\(\dfrac{a_{2 n}}{a_{2(n-1)}}= q^2>0\),故\(a_{2n}\),\(a_{2(n-1)}\)同号,即偶数项的正负相同;奇数项同理).

【例1】 若\(-1\) ,\(b_1\) ,\(b_2\) ,\(b_3\),\(-4\)成等比数列,则\(b_2=\)\(\underline{\quad \quad}\).
解:\(b_2^2=-1×(-4)=4⇒b_2=±2\),而\(b_2=-1\cdot q^2<0\),故\(b_2=-2\).
(\(b_2\)与\(-1\) ,\(-4\)均是奇数项,符号相同\()\)

【例2】 等比数列\(\{a_n \}\)中,\(a_1=2\),\(q=3\),则\(a_n\)等于\(\underline{\quad \quad}\) .
答案 \(2×3^{n-1}\)
 

证明一个数列是等比数列的方法

① 定义法: \(\dfrac{a_n}{a_{n-1}}=q\)\(( q\)是常数,\(n≥2)⇒\{a_n\}\)是等比数列;
② 中项法:\(a_{n+1}^2=a_n a_{n+2} (a_n≠ 0 ,n∈ N^*)⇒\{a_n\}\)是等比数列;
③ 通项公式法:若数列的通项公式是形如\(a_n=k\cdot q^n\) \((k ,q\)是不为\(0\)常数\()\), 则数列\(\{a_n \}\)是等比数列.
 

基本方法

【题型1】等比数列的判定和证明

【典题1】 (多选)已知数列\(\{a_n \}\)是等比数列,那么下列数列一定是等比数列的是(  )
 A.\(\left\{\dfrac{1}{a_n}\right\}\) \(\qquad \qquad \qquad\) B.\(\{ \log_2⁡a_n \}\) \(\qquad \qquad \qquad\) C.\(\{a_n\cdot a_{n+1}\}\) \(\qquad \qquad \qquad\) D.\(\{a_n+a_{n+1}+a_{n+2}\}\)
解析 由题意,可设等比数列\(\{a_n \}\)的公比为\(q(q≠0)\),则\(a_n=a_1 q^{n-1}\).
对于\(A\): \(\dfrac{1}{a_n}=\dfrac{1}{a_1 q^{n-1}}=\dfrac{1}{a_1}\left(\dfrac{1}{q}\right)^{n-1}\).
\(\therefore\)数列 \(\left\{\dfrac{1}{a_n}\right\}\)是一个以 \(\dfrac{1}{a_1}\)为首项, \(\dfrac{1}{q}\)为公比的等比数列;
对于\(B\): \(\log _2 a_n=\log _2\left(a_1 q^{n-1}\right)=\log _2 a_1+(n-1) \log _2 q\).
\(\therefore\)数列\(\{ \log_2⁡a_n \}\)是一个以\(\log_2⁡a_1\)为首项,\(\log_2⁡q\)为公差的等差数列;
对于\(C\): \(\because \dfrac{a_{n+1} \cdot a_{n+2}}{a_n \cdot a_{n+1}}=\dfrac{a_{n+2}}{a_n}=\dfrac{a_1 \cdot q^{n+1}}{a_1 \cdot q^{n-1}}=q^2\),
\(\therefore\)数列\(\{a_n a_{n+1}\}\)是一个以\(q^2\)为公比的等比数列;
对于\(D\): \(\because \dfrac{a_{n+1}+a_{n+2}+a_{n+3}}{a_n+a_{n+1}+a_{n+2}}=\dfrac{q\left(a_n+a_{n+1}+a_{n+2}\right)}{a_n+a_{n+1}+a_{n+2}}=q\),
\(\therefore\)数列\(\{a_n+a_{n+1}+a_{n+2}\}\)是一个以\(q\)为公比的等比数列.
故选:\(ACD\).
点拨 证明\(\{a_n \}\)是等比数列常见的方法是定义法: \(\dfrac{a_n}{a_{n-1}}=q\)\(( q\)是常数,\(n≥2)\);
选择题也可采取排除法,检验前三项是否成等比数列.
 

【典题2】已知数列\(\{a_n \}\)的前\(n\)项和为\(S_n\),且满足 \(S_n=\dfrac{3}{2} a_n+b\)\(\left(n \in N^*, b \in R, b \neq 0\right)\).
  (1)求证:\(\{a_n \}\)是等比数列;\(\qquad \qquad\) (2)求证:\(\{a_n+1\}\)不是等比数列.
证明 (1)因为 \(S_n=\dfrac{3}{2} a_n+b\),所以当\(n≥2\)时 \(S_{n-1}=\dfrac{3}{2} a_{n-1}+b\),
两式相减得 \(S_n-S_{n-1}=\dfrac{3}{2} a_n+b-\dfrac{3}{2} a_{n-1}-b\),
\(\therefore a_n=\dfrac{3}{2} a_n-\dfrac{3}{2} a_{n-1}\),
\(\therefore a_n=3a_{n-1}\),
故\(\{a_n \}\)是公比为\(q=3\)的等比数列.
(2)假设:\(\{a_n+1\}\)是等比数列,则有:\((a_n+1)^2=(a_{n+1}+1)( a_{n-1}+1)\),
即:\(a_n^2+2a_n+1=a_{n+1} a_{n-1}+a_{n+1}+a_{n-1}+1\),
由(1)知\(\{a_n \}\)是等比数列,所以\(a_n^2=a_{n+1} a_{n-1}\),
于是\(2a_n=a_{n+1}+a_{n-1}\),即\(6a_n=a_{n-1}+9a_{n-1}\),解得\(a_{n-1}=0\),
这与\(\{a_n \}\)是等比数列相矛盾,
故假设错误,即:\(\{a_n+1\}\)不是等比数列.
 

【巩固练习】

1.根据下列通项能判断数列为等比数列的是(  )
 A.\(a_n=n\) \(\qquad \qquad \qquad\) B. \(a_n=\sqrt{n}\) \(\qquad \qquad \qquad\) C.\(a_n=2^{-n}\) \(\qquad \qquad \qquad\) D.\(a_n= \log_2⁡n\)
 

2.已知数列\(\{a_n \}\)是等比数列,则下列数列中:①\(\{a_n^3\}\);②\(\{2^{a_n}\}\);③ \(\left\{\dfrac{1}{2 a_n}\right\}\),等比数列的个数是(  )
 A.\(0\)个 \(\qquad \qquad \qquad \qquad\) B.\(1\)个 \(\qquad \qquad \qquad \qquad\) C.\(2\)个 \(\qquad \qquad \qquad \qquad\)D.\(3\)个
 

3.已知数列\(\{a_n \}\)满足\(\lg⁡a_n=3n+5\),求证:\(\{a_n \}\)是等比数列.
 
 

4.已知数列\(\{a_n \}\)满足\(a_1=1\),\(2a_{n+1}=3a_n+1\).证明:\(\{a_n+1\}\)是等比数列.
 
 

参考答案

  1. 答案 \(C\)
    解析 在\(A\)中,\(a_n=n\)是等差数列,不是等比数列,故\(A\)错误;
    在\(B\)中, \(a_n=\sqrt{n}\)既不是等差数列,又不是等比数列,故\(B\)错误;
    在\(C\)中,\(a_n=2^{-n}\)是等比数列,故\(C\)正确;
    在\(D\)中,\(a_n= \log_2⁡n\)既不是等差数列,又不是等比数列,故\(D\)错误.
    故选:\(C\).

  2. 答案 \(C\)
    解析 \(\because\)数列\(\{a_n \}\)是等比数列,设公比为\(q\),则\(q\)为常数.
    则 \(a_n^3=a_1^3 q^{3 n-3}\),则 \(\dfrac{a_{n+1^3}}{a_n^3}=q^3\),为常数,故:①\(\{a_n^3\}\)为等比数列.
    \(\because \dfrac{2^{a_{n+1}}}{2^{a_n}}=2^{a_{n+1}-a_n}\),不是常数,故② \(\{2^{a_n}\}\)不是等比数列.
    \(\because \dfrac{\frac{1}{2 a_{n+1}}}{\frac{1}{2 a_n}}=\dfrac{a_n}{a_{n+1}}=\dfrac{1}{q},\),为常数,故③ \(\left\{\dfrac{1}{2 a_n}\right\}\)为等比数列,
    故选:\(C\).

  3. 证明 \(\because \lg a_n=3 n+5\), \(\therefore a_n=10^{3 n+5}\).
    \(\therefore a_{n+1}=10^{3(n+1)+5}=10^{3 \mathrm{n}+8}\).
    \(\therefore \dfrac{a_{n+1}}{a_n}=\dfrac{10^{3 n+8}}{10^{3 n+5}}=1000\).
    \(\therefore\) 数列\(\{a_n \}\)是等比数列.

  4. 证明 由\(2a_{n+1}=3a_n+1\),得\(a_{n+1}=\dfrac{3}{2} a_n+\dfrac{1}{2}\),即\(a_{n+1}+1=\dfrac{3}{2}\left(a_n+1\right)\),
    故\(\dfrac{a_{n+1}+1}{a_n+1}=\dfrac{3}{2}\).
    又\(a_1+1=2\),
    所以\(\{a_n+1\}\)是首项为\(2\),公比为 \(\dfrac{3}{2}\)的等比数列.
     

【题型2】 等比数列的通项公式

【典题1】 在等比数列\(\{a_n \}\)中,\(a_5-a_1=15\),\(a_4-a_2=6\),则\(a_3=\)(  )
 A.\(-4\) \(\qquad \qquad \qquad \qquad\) B.\(4\) \(\qquad \qquad \qquad \qquad\) C.\(-4\)或\(4\) \(\qquad \qquad \qquad \qquad\) D.\(-8\)或\(8\)
解析 设等比数列的公比为\(q\),则
\(\because a_5-a_1=15\),\(a_4-a_2=6\),
\(\therefore\left\{\begin{array} { l } { a _ { 1 } q ^ { 4 } - a _ { 1 } = 1 5 } \\ { a _ { 1 } q ^ { 3 } - a _ { 1 } q = 6 } \end{array} \Rightarrow \left\{\begin{array} { c } { a _ { 1 } ( q ^ { 4 } - 1 ) = 1 5 } \\ { a _ { 1 } ( q ^ { 3 } - q ) = 6 } \end{array} \Rightarrow \left\{\begin{array}{c} a_1\left(q^2-1\right)\left(q^2+1\right)=15 \\ a_1 q\left(q^2-1\right)=6 \end{array}\right.\right.\right.\),
\(\therefore q^2+1=\dfrac{5}{2} q\), \(\therefore q=2\)或 \(q=\dfrac{1}{2}\),
\(\therefore a_1=1\)或\(a_1=-16\),\(\therefore a_3=±4\),
故选:\(C\).
点拨 本题采取基本量法,\(a_1\),\(q\)是等比数列的基本量,在等比数列中遇到\(a_n\)采取通项公式 \(a_n=a_1 \mathrm{q}^{\mathrm{n}-1}\);由通项公式由已知条件得到关于\(a_1\),\(q\)的方程组,再通过因式分解消元解方程.
 

【典题2】已知数列\(\{a_n \}\)中,\(a_1=7\),\(a_3=1\),若 \(\left\{\dfrac{1}{a_n+1}\right\}\)是等比数列,则\(a_{11}\)等于(  )
 A.\(-\dfrac{31}{32}\) \(\qquad \qquad \qquad \qquad\) B.\(-\dfrac{63}{64}\) \(\qquad \qquad \qquad \qquad\) C.\(-\dfrac{127}{128}\) \(\qquad \qquad \qquad \qquad\) D.\(-\dfrac{255}{256}\)
解析 设等比数列 \(\left\{\dfrac{1}{a_n+1}\right\}\)的公比为\(q\),\(a_1=7\),\(a_3=1\),
则 \(\dfrac{1}{1+1}=\dfrac{1}{1+7} \cdot q^2\),解得\(q^2=4\).
\(\therefore \dfrac{1}{a_{11}+1}=\dfrac{1}{a_1+1} \cdot q^{10}=\dfrac{1}{8} \times 2^{10}=2^7=128\),解得\(a_{11}=-\dfrac{127}{128}\),
故选:\(C\).
 

【巩固练习】

1.已知数列\(\{a_n \}\)满足\(a_1=1\),\(a_{n+1}=2a_n (n∈N^* )\),则\(a_4=\)(  )
 A.\(4\) \(\qquad \qquad \qquad \qquad\) B.\(6\) \(\qquad \qquad \qquad \qquad\) C. \(8\) \(\qquad \qquad \qquad \qquad\) D.\(2\)
 

2.设\(\{a_n \}\)是等比数列,下列结论中不正确的是(  )
 A.若\(a_1 a_2>0\),则\(a_2 a_3>0\) \(\qquad \qquad \qquad \qquad\) B.若\(a_1+a_3<0\),则\(a_5<0\) \(\qquad \qquad \qquad \qquad\)
 C.若\(a_1 a_2<0\),则\(a_1 a_5<0\) \(\qquad \qquad \qquad \qquad\) D.若\(0<a_1<a_2\),则\(a_1+a_3>2a_2\)
 

3.已知\(-1\),\(a_1,\)\(a_2\),\(-4\)成等差数列,且\(-1\),\(b_1\),\(b_2\),\(b_3\),\(-4\)成等比数列,则 \(\dfrac{a_1+a_2}{b_2}\) 的值为\(\underline{\quad \quad}\).
 

4.\(\{a_n \}\)是各项均为正数的等差数列,\(\{b_n\}\)是等比数列,已知\(\dfrac{a_1}{b_1}=\dfrac{a_2}{b_2}=1\), \(\dfrac{a_3}{b_3}=\dfrac{8}{9}\),那么 \(\dfrac{a_4}{b_4}=\)\(\underline{\quad \quad}\).
 

参考答案

  1. 答案 \(C\)
    解析 因为\(a_1=1\),\(a_{n+1}=2a_n (n∈N^* )\),
    所以 \(\dfrac{a_n+1}{a_n}=2\),即数列\(\{a_n \}\)是以\(1\)为首项,\(2\)为公比的等比数列,
    所以\(a_n=2^{n-1}\),可得\(a_4=2^3=8\).
    故选:\(C\).

  2. 答案 \(C\)
    解析 设等比数列\(\{a_n \}\)的公比为\(q\),
    \(A\).\(\because a_1 a_2>0\),\(\therefore a_1^2 q>0\),\(\therefore q>0\),则\(a_2 a_3=a_1^2 q^3>0\),正确.
    \(B\).\(\because a_1+a_3<0\),\(\therefore a_1 (1+q^2)<0\),\(\therefore a_1<0\),则\(a_5=a_1 q^4<0\),正确.
    \(C\).\(\because a_1 a_2<0\),\(\therefore a_1^2 q<0\),\(\therefore q<0\),则\(a_1 a_5=a_1^2 q^4>0\),因此不正确.
    \(D\).\(\because 0<a_1<a_2\),\(\therefore 0<a_1<a_1 q\),\(\therefore a_1>0\),\(q>0\),\(q≠1\).
    则\(a_1+a_3=a_1 (1+q^2)>2a_1 q=2a_2\),正确.
    故选:\(C\).

  3. 答案 \(\dfrac{5}{2}\)
    解析 以题意得\(a_1+a_2=-1+(-4)=-5\),\(b^2=-1×(-4)=4⇒b=±2\),
    因\(-1\),\(b_1\),\(b_2\)成等比数列,\(\therefore b_1^2=-b_2>0⇒b_2<0\),
    \(\therefore b_2=-2\),则 \(\dfrac{a_1+a_2}{b_2}=\dfrac{5}{2}\).

  4. 答案 \(\dfrac{20}{27}\)
    解析 设等差数列\(\{a_n \}\)的公差为\(d\),等比数列\(\{b_n\}\)的公比为\(q\),
    则\(a_1+d=a_1 q\),\(9(a_1+2d)=8a_1 q^2\),
    联立可得\(8q^2-18q+9=0\),解得: \(q=\dfrac{3}{2}\)或 \(q=\dfrac{3}{4}\).
    \(\because \{a_n\}\)是各项均为正数,则\(d>0\),\(\therefore q>1\),则 \(q=\dfrac{3}{2}\),
    \(\therefore b_4=a_1 \times\left(\dfrac{3}{2}\right)^3=\dfrac{27}{8} a_1\), \(\therefore \dfrac{a_2}{b_2}=\dfrac{3}{2} a_1\),
    则\(d=\dfrac{3}{2} a_1-a_1=\dfrac{1}{2} a_1\),
    \(\therefore a_4=a_1+3 d=\dfrac{5}{2} a\), \(\therefore \dfrac{a_4}{b_4}=\dfrac{\frac{5}{2} a_1}{\frac{27}{8} a_1}=\dfrac{20}{27}\).
     

【题型3】应用问题

【典题1】 某工厂\(2010\)年\(1\)月的生产总值为\(a\)万元,计划从\(2010\)年\(2\)月起,每个月生产总值比上一个月增长\(m\%\),那么到\(2011\)年\(8\)月底该厂的生产总值为多少万元?
解析 设从\(2010\)年\(1\)月开始,第\(n\)个月该厂的生产总值是\(a_n\)万元,则\(a_{n+1}=a_n+a_n m\%\),
\(\therefore \dfrac{a_{n+1}}{a_n}= =1+m\%\),
\(\therefore\)数列\(\{a_n \}\)是首项\(a_1=a\),公比\(q=1+m\%\)的等比数列.
\(\therefore a_n=a\left(1+m\%\right)^{n-1}\).
\(\therefore 2011\)年\(8\)月底该厂的生产总值为 \(a_{20}=a(1+m \%)^{20-1}=a(1+m \%)^{19}\) (万元).
 

【典题2】已知数列\(\{a_n \}\)满足\(S_n=n-a_n\).
  (1)求证:数列\(\{a_n-1\}\)是等比数列;\(\qquad \qquad\) (2)求\(a_n\).
解析 (1)证明:\(\because\) 数列\(\{a_n \}\)满足\(S_n=n-a_n\).
\(\therefore S_{n+1}=n+1-a_{n+1}\),两式相减可得\(S_{n+1}-S_n={n+1}-n-a_{n+1}+a_n\),
\(\therefore a_{n+1}=1-a_{n+1}+a_n\), \(\therefore a_{n+1}=\dfrac{1}{2}+\dfrac{1}{2} a_n,\),
\(\therefore \dfrac{a_{n+1}-1}{a_n-1}=\dfrac{\dfrac{1}{2}+\dfrac{1}{2} a_n-1}{a_n-1}=\dfrac{\dfrac{1}{2}\left(a_n-1\right)}{a_n-1}=\dfrac{1}{2}\),
\(\therefore\) 数列\(\{a_n-1\}\)是\(\dfrac{1}{2}\)为公比的等比数列;
(2)由(1)可得数列\(\{a_n-1\}\)是\(\dfrac{1}{2}\)为公比的等比数列,
由\(S_n=n-a_n\)可得\(a_1=S_1=1-a_1\),解得\(a_1=\dfrac{1}{2}\),
故\(a_1-1=-\dfrac{1}{2}\),
\(\therefore a_n-1=\dfrac{1}{2}×(\dfrac{1}{2})^{n-1}=(\dfrac{1}{2})^n\),
\(\therefore a_n=1+(\dfrac{1}{2})^n\).
 

【巩固练习】

1.河南洛阳龙门石窟是中国石刻艺术宝库,现为世界非物质文化遗产之一.某洞窟的浮雕共\(8\)层,它们构成一幅优美的图案.各层浮雕数成等比数列,第二层浮雕数为\(6\),第\(5\)层浮雕数为\(48\),则第\(7\)层浮雕数为(  )
 A.\(96\) \(\qquad \qquad \qquad \qquad\) B.\(128\) \(\qquad \qquad \qquad \qquad\) C. \(192\) \(\qquad \qquad \qquad \qquad\) D.\(384\)
 

2.我国古代数学著作《九章算术》中有“竹九节”问题:现有一根\(9\)节的竹子,自上而下各节的容积成等比数列,最上面\(3\)节的容积之积为\(3\)升,最下面\(3\)节的容积之积为\(243\)升,则第\(5\)节的容积是\(\underline{\quad \quad}\)升.
 

3.已知等比数列\(\{a_n \}\)的各项均为正数,且\(a_1>1\),前\(n\)项之积为\(T_n\),设 \(T_{10}=T_{20}\),
  (1)当\(n\)为何值时,\(T_n\)最大?
  (2)是否存在自然数\(n\),使得\(T_n=1\)?
 
 

4.在数列\(\{a_n \}\)中.已知\(a_1=2\), \(a_{n+1}=\dfrac{2 a_n}{a_n+1}\).
  (1)求证: \(\left\{\dfrac{1}{a_n}-1\right\}\)是等比数列,
  (2)若对任意\(n∈N_+\),\(a_n>m\)恒成立,求\(m\)的最大值.
 
 

参考答案

  1. 答案 \(C\)
    解析 设第\(2\)层浮雕数为\(a_2\),第\(5\)层浮雕数为\(a_5\),公比为\(q\),
    则\(a_2=6\),\(a_5=48\),
    \(\because\)各层浮雕数成等比数列,
    \(\therefore 48=6×q^3\),\(\therefore q=2\),
    \(\therefore\) 第\(7\)层浮雕数为\(a_7=a_5⋅q^2=48×4=192\),
    故选:\(C\).

  2. 答案 \(3\)
    解析 设第\(n(n≤9,n∈N^* )\)节的容积为\(a_n\),则\(\{a_n \}\)是等比数列,
    \(\because\)最上面\(3\)节的容积之积为\(3\)升,最下面\(3\)节的容积之积为\(243\)升,
    \(\therefore\left\{\begin{array}{l} a_1 \cdot a_1 q^{\prime} a_1 q^2=3 \\ a_1 q^6 \cdot a_1 q^7 \cdot a_1 q^8=243 \end{array}\right.\),解得 \(a_1 q=3^{\dfrac{1}{3}}\), \(q^3=9^{\dfrac{1}{3}}\),
    \(\therefore\)第\(5\)节的容积 \(a_5=a_1 q^4=a_1 q \cdot q^3=3^{\dfrac{1}{3}} \cdot 9^{\dfrac{1}{3}}=3\)(升).

  3. 答案 (1) 当\(n=10\)时,\(T_n\)最大 ;(2) 当\(n=20\)时,\(T_{20}=1\).
    解析 (1)设等比数列\(\{a_n \}\)的公比为\(q>0\),且\(a_1>1\),\(\because T_{10}=T_{20}\),
    \(\therefore a_{11} a_{12} \cdot \ldots \cdot a_{20}=1\),
    \(\therefore a_1^{10} q^{10+11+\cdots+19}=a_1^{10} q^{145}=1\),
    \(\therefore a_1^2 q^{19}=1\).
    \(\therefore T_n=a_1^n \cdot q^{1+2+\cdots+(n-1)}=a_1^n q^{\dfrac{n(n-1)}{2}}=a_1^{\dfrac{n(20-n)}{19}}\).
    可知:当\(n=10\)时,指数\(\dfrac{n(20-n)}{19}\)取得最大值 \(\dfrac{100}{19}\),
    \(\therefore\) 当\(n=10\)时,\(T_n\)最大.
    (2)由 \(T_n=a_1 \dfrac{n(20-n)}{19}\),可知:当\(n=20\)时,\(T_{20}=1\).

  4. 答案 (1)略 ;(2) \(1\) .
    解析 证明:(1)\(\because a_1=2\), \(a_{n+1}=\dfrac{2 a_n}{a_n+1}\),
    \(\therefore a_n>0\)恒成立;\(a_{n+1} a_n+a_{n+1}=2a_n\),
    \(\therefore 1+\dfrac{1}{a_n}=2 \dfrac{1}{a_{n+1}}\) ,
    \(\therefore \dfrac{1}{a_n}-1=2\left(\dfrac{1}{a_{n+1}}-1\right)\),
    \(\therefore \dfrac{1}{a_{n+1}}-1=\dfrac{1}{2}\left(\dfrac{1}{a_n}-1\right)\),
    又 \(\because \dfrac{1}{a_1}-1=-\dfrac{1}{2}\),
    \(\therefore\left\{\dfrac{1}{a_n}-1\right\}\)是以\(-\dfrac{1}{2}\)为首项,\(\dfrac{1}{2}\)为公比的等比数列;
    (2) \(\therefore\left\{\dfrac{1}{a_n}-1\right\}\)是以\(-\dfrac{1}{2}\)为首项,\(\dfrac{1}{2}\)为公比的等比数列,
    \(\therefore \dfrac{1}{a_n}-1=-\dfrac{1}{2} \cdot\left(\dfrac{1}{2}\right)^{n-1}=-\left(\dfrac{1}{2}\right)^n\),
    \(\therefore a_n=\dfrac{2^n}{2^n-1}=1+\dfrac{1}{2^n-1}\),
    \(\therefore\)数列\(\{a_n \}\)是递减数列,且当\(n→+∞\)时,\(a_n→1\);
    \(\therefore a_n>1\)恒成立,
    \(\therefore m\)的最大值为\(1\).
     

分层练习

【A组---基础题】

1.在等比数列\(\{a_n \}\)中,已知\(a_1=\dfrac{9}{8}\),\(a_n=\dfrac{1}{3}\),\(q=\dfrac{2}{3}\),则\(n\)的值为(  )
 A.\(3\) \(\qquad \qquad \qquad \qquad\) B.\(4\) \(\qquad \qquad \qquad \qquad\) C. \(5\) \(\qquad \qquad \qquad \qquad\) D.\(6\)
 

2.在等比数列\(\{a_n \}\)中,已知\(a_1=2\),\(a_1-a_3+a_5=26\),则\(a_3=\)(  )
 A.\(20\) \(\qquad \qquad \qquad \qquad\) B.\(12\) \(\qquad \qquad \qquad \qquad\) C. \(8\) \(\qquad \qquad \qquad \qquad\) D.\(4\)
 

3.已知数列\(\{a_n \}\)是等比数列,下列四个命题中不正确的命题有(  )
 A.数列\(\{|a_n |\}\)是等比数列 \(\qquad \qquad \qquad \qquad\) B.数列\(\{a_n a_{n+1}\}\)是等比数列
 C.数列 \(\left\{\dfrac{1}{a_n}\right\}\)是等比数列 \(\qquad \qquad \qquad \qquad\) D.数列\(\{\lg a_n^2\}\)是等比数列
 

4.标准对数视力表采用的“五分记录法”是我国独创的视力记录方式,此表由\(14\)行开口方向各异的正方形\(“E”\)形视标所组成,从上到下分别对应视力\(4.0,4.1,…,5.2,5.3\),且从第一行开始往下,每一行\(“E”\)形视标边长都是下一行\(“E”\)形视标边长的\(\sqrt[10]{10}\)倍,若视力\(4.1\)的视标边长为\(a\),则视力\(4.9\)的视标边长为(  )
 A. \(10^{\frac{2}{5}} a\) \(\qquad \qquad \qquad \qquad\) B. \(10^{-\frac{2}{5}} a\)\(\qquad \qquad \qquad \qquad\) C. \(10^{\frac{4}{5}} a\) \(\qquad \qquad \qquad \qquad\) D. \(10^{-\frac{4}{5}} a\)
 

5.(多选)已知等比数列\(\{a_n \}\)中,满足\(a_1=1\),公比\(q=-2\),则(  )
 A.数列\(\{2a_n+a_{n+1}\}\)是等比数列 \(\qquad \qquad \qquad \quad\) B.数列\(\{a_{n+1}-a_n\}\)是等比数列
 C.数列\(\{a_n a_{n+1}\}\)是等比数列 \(\qquad \qquad \qquad \qquad\) D.数列\(\{ \log_2⁡|a_n |\}\)是递减数列
 

6.一批设备价值\(a\)万元,由于使用磨损,每年比上一年价值降低\(b\%\),则\(n\)年后这批设备的价值为\(\underline{\quad \quad}\) .
 

7.设公差不为零的等差数列\(\{a_n \}\)满足\(a_3=7\),且\(a_1-1\),\(a_2-1\),\(a_4-1\)成等比数列,则\(a_{10}\)等于  .
 

8.\(△ABC\),若\(\sin A\),\(\cos \dfrac{B}{2}\),\(\sin C\)成等比数列,则\(△ABC\)的形状为\(\underline{\quad \quad}\).
 

9.已知数列\(\{a_n \}\)中,\(a_1=1\),\(a_{n+1}=2a_n+1\),\((n∈N^*)\).求证:数列\(\{a_n+1\}\)是等比数列.
 
 

10.已知等比数列\(\{a_n \}\), \(a_1 a_2=-\dfrac{1}{2}\), \(a_3=\dfrac{1}{4}\).
  (1)求数列\(\{a_n \}\)的通项公式;
  (2)证明:对任意\(k∈N^*\),\(a_k\),\(a_{k+2}\), \(a_{k+1}\)成等差数列.
 
 

11.数列\(\{a_n \}\)满足 \(a_{n+1}=\dfrac{1}{2} a_n+1\),\(a_1=1\),若\(b_n=a_n-2\).
  (1)求证:数列\(\{b_n \}\)是等比数列;(2)求数列\(\{a_n \}\)的通项公式.
 
 

参考答案

  1. 答案 \(B\)
    解析 \(\because\)在等比数列\(\{a_n \}\)中,已知 \(a_1=\dfrac{9}{8}\), \(a_n=\dfrac{1}{3}\), \(q=\dfrac{2}{3}\),
    \(\therefore a_n=\dfrac{9}{8} \times\left(\dfrac{2}{3}\right)^{n-1}=\dfrac{1}{3}\), \(\therefore\left(\dfrac{2}{3}\right)^{n-1}=\dfrac{8}{27}=\left(\dfrac{2}{3}\right)^3\),
    \(\therefore n-1=3\),可得\(n=4\),
    故选:\(B\).

  2. 答案 \(C\)
    解析 根据题意,设等比数列\(\{a_n \}\)的公比为\(q\),
    已知\(a_1=2\),\(a_1-a_3+a_5=26\),
    则有\(a_1-a_3+a_5=a_1-a_1 q^2+a_1 q^4=2(1-q^2+q^4 )=26\),
    解得\(q^2=4\)或\(-3\)(舍),
    所以\(a_3=a_1 q^2=8\),
    故选:\(C\).

  3. 答案 \(D\)
    解析 由\(\{a_n \}\)是等比数列可得 \(\dfrac{a_n}{a_{n-1}}=q\)\((q\)为常数,\(q≠0)\),
    \(\dfrac{\left|a_n\right|}{\left|a_{n-1}\right|}=\left|\dfrac{a_n}{a_{n-1}}\right|=|q|\)为常数,故是等比数列;\(A\)正确.
    \(\dfrac{a_n a_{n+1}}{a_{n-1} a_n}=\dfrac{a_{n+1}}{a_{n-1}}=q^2\)为常数,故是等比数列;\(B\)正确.
    \(\dfrac{\dfrac{1}{a_n}}{\dfrac{1}{a_{n-1}}}=\dfrac{a_{n-1}}{a_n}=\dfrac{1}{q}\)常数,故是等比数列;\(C\)正确.
    数列\(a_n=1\)是等比数列,但是\(\lg a_n^2=0\)不是等比数列;\(D\)不正确.
    故选:\(D\).

  4. 答案 \(D\)
    解析 根据题意可知视际边长从上到下是以 \(\sqrt[10]{10}\)为公比的等比数列,
    记视力\(4.1\)的视标边长为\(a_1=a\),
    则视力\(4.9\)的视标边长为 \(a_9=a \cdot\left(10^{-\dfrac{1}{10}}\right)^8=10^{-\dfrac{4}{5}} a\).
    故选:\(D\).

  5. 答案 \(BC\)
    解析 \(\because\) 等比数列\(\{a_n \}\)中,满足\(a_1=1\),公比\(q=-2\),
    \(\therefore a_n=1×(-2)^{n-1}=(-2)^{n-1}\).
    由此可得\(2a_n+a_{n+1}=2(-2)^{n-1}+(-2)^n=0\),故\(A\)错误;
    \(a_{n+1}-a_n=(-2)^n-(-2)^{n-1}=-3(-2)^{n-1}\),
    故数列\(\{a_{n+1}-a_n\}\)是等比数列,故\(B\)正确;
    \(a_n a_{n+1}=(-2)^{n-1} (-2)^n=(-2)^{2n-1}\),故数列\(\{a_n a_{n+1}\}\)是等比数列,故\(C\)正确;
    \(\log _2\left|a_n\right|=\log _2 2^{n-1}=n-1\),故数列\(\{ \log_2⁡|a_n | \}\)是递增数列,故\(D\)错误,
    故选:\(BC\).

  6. 答案 \(a(1-b\%)^n\)
    解析 依题意可知第一年后的价值为\(a(1-b\%)\),第二年价值为\(a(1-b\%)^2\),
    依此类推可知每年的价值成等比数列,其首项\(a(1-b\%)\),公比为\(1-b\%\),
    进而可知\(n\)年后这批设备的价值为\(a(1-b\%)^n\).

  7. 答案 \(21\)
    解析 设等差数列\(\{a_n \}\)的公差为\(d\),则\(d≠0\),
    则\(a_1=a_3-2d=7-2d\),\(a_2=a_3-d=7-d\),\(a_4=a_3+d=7+d\),
    由于\(a_1-1\),\(a_2-1\),\(a_4-1\)成等比数列,则\((a_2-1)^2=(a_1-1)(a_4-1)\),
    即\((6-d)^2=(6-2d)(6+d)\),化简得\(d^2-2d=0\),由于\(d≠0\),解得\(d=2\),
    因此\(a_{10}=a_3+7d=7+7×2=21\).
    故答案为:\(21\).

  8. 答案 等腰三角形
    解析 \(\because \sin A\),\(\cos \dfrac{B}{2}\),\(\sin C\)成等比数列, \(\therefore \cos ^2 \dfrac{B}{2}=\sin A \sin C\),
    \(\therefore \dfrac{1}{2}(1+\cos B)=-\dfrac{1}{2}[\cos (A+C)-\cos (A-C)]\),
    \(\therefore 1+\cos B=-[-\cos B-\cos (A-C)]\),
    化为 \(\cos (A-C)=1\),又\(A\),\(C∈(0,π)\),
    \(\therefore A=C\),可得\(a=c\).
    则\(△ABC\)的形状为等腰三角形.

  9. 证明 \(\because a_{n+1}=2a_n+1\),\((n∈N^*)\),
    \(\therefore a_{n+1}+1=2(a_n+1)\),
    \(\therefore \dfrac{a_{n+1}+1}{a_n+1}=2\),
    \(\therefore\)数列\(\{a_n+1\}\)是以\(2\)为公比的等比数列.

  10. 答案 (1) \(a_n=\left(-\dfrac{1}{2}\right)^{n-1}\);(2) 略.
    解析 (1)根据题意,设等比数列\(\{a_n \}\)的公比为\(q\),则\(a_n=a_1 q^{n-1}\),
    若\(a_1 a_2=-\dfrac{1}{2}\),则 \(a_1^2 q=-\dfrac{1}{2}\),
    若\(a_3=\dfrac{1}{4}\),则\(a_1 q^2=\dfrac{1}{4}\),变形可得\(\dfrac{a_1}{q}=-2\),解可得\(a_1^3=1\),则\(a_1=1\),
    则有\(q=-\dfrac{1}{2}\) ;故\(a_n=\left(-\dfrac{1}{2}\right)^{n-1}\);
    (2)证明:根据题意, \(a_n=\left(-\dfrac{1}{2}\right)^{n-1}\),
    则\(a_k=\left(-\dfrac{1}{2}\right)^{k-1}\),\(a_{k+1}=\left(-\dfrac{1}{2}\right)^k\),\(a_{k+2}=\left(-\dfrac{1}{2}\right)^{k+1}\);
    则\(a_k+a_{k+1}-2 a_{k+2}=\left(-\dfrac{1}{2}\right)^{k-1}+\left(-\dfrac{1}{2}\right)^k-2\left(-\dfrac{1}{2}\right)^{k+1}\)\(=\left(-\dfrac{1}{2}\right)^k\left[-2+1-2 x\left(-\dfrac{1}{2}\right)\right]=0\),则有\(a_k+a_{k+1}=2 a_{k+2}\)
    故\(a_k\),\(a_{k+2}\), \(a_{k+1}\)成等差数列.

  11. 答案 (1)略 ;(2) \(a_n=2-\dfrac{1}{2^{n-1}}\).
    解析 (1)证明: \(\because a_{n+1}=\dfrac{1}{2} a_n+1,\),
    \(\therefore a_n-2=\dfrac{1}{2}\left(a_{n-1}-2\right)\),又\(b_n=a_n-2\),
    \(\therefore b_n=\dfrac{1}{2} b_{n-1}\),
    \(\therefore \{b_n \}\)是公式为\(\dfrac{1}{2}\)的等比数列;
    (2)解:\(b_1=a_1-2=-1\), \(b_n=(-1) \times\left(\dfrac{1}{2}\right)^{n-1}\),
    即\(a_n-2=-\left(\dfrac{1}{2}\right)^{n-1}\), \(\therefore a_n=2-\dfrac{1}{2^{n-1}}\) .
     

【B组---提高题】

1.已知实数\(a>0\),\(b>0\),\(\sqrt{2}\)是\(8^a\)与\(2^b\)的等比中项,则\(\dfrac{6}{a}+\dfrac{2}{b}\)的最小值是\(\underline{\quad \quad}\).
 

2.设数列\(\{a_n \}\)的首项\(a_1\)为常数,且\(a_n=3^{n-1}-2a_{n-1} (n≥2)\).
  (1) 判断数列\(\left\{a_n-\dfrac{3^n}{5}\right\}\)是否为等比数列,请说明理由;
  (2) \(S_n\)是数列\(\{a_n \}\)的前\(n\)项的和,若\(\{S_n\}\)是递增数列,求\(a_1\)的取值范围.
 
 

参考答案

  1. 答案 \(32\)
    解析 因为\(\sqrt{2}\)是\(8^a\)与\(2^b\)的等比中项,所以 \(8^a 2^b=(\sqrt{2})^2=2\),
    即\(2^{3a+b}=2\),所以\(3a+b=1\),
    所以\(\dfrac{6}{a}+\dfrac{2}{b}=\left(\dfrac{6}{a}+\dfrac{2}{b}\right)(3 a+b)=20+\dfrac{6 b}{a}+\dfrac{6 a}{b} \geq 20+2 \sqrt{\dfrac{6 b}{a} \cdot \dfrac{6 a}{b}}=32\),
    当且仅当\(\dfrac{6 b}{a}=\dfrac{6 a}{b}\),即\(a^2=b^2\),\(a=b\)时,等号成立.
    所以\(\dfrac{6}{a}+\dfrac{2}{b}\)的最小值是\(32\).
    故答案为:\(32\).

  2. 答案 (1) 略;(2) \(-\dfrac{3}{4}<a_1<\dfrac{3}{2}\) .
    解析 (1)当\(n≥2\)时, \(a_n-\dfrac{3^n}{5}=3^{n-1}-2 a_{n-1}-\dfrac{3^n}{5}=2 \cdot \dfrac{3^{n-1}}{5}-2 a_{n-1}=-2\left(a_{n-1}-\dfrac{3^{n-1}}{5}\right)\)
    (定义法证明等比数列,要注意首项\(a_1-\dfrac{3}{5}\)是否等于\(0\))
    当\(a_1-\dfrac{3}{5} \neq 0\),即\(a_1 \neq \dfrac{3}{5}\)时,\(\dfrac{a_n-\dfrac{3^n}{5}}{a_{n-1}-\dfrac{3^{n-1}}{5}}=-2\)
    \(\therefore a_1 \neq \dfrac{3}{5}\)时, \(\left\{a_n-\dfrac{3^n}{5}\right\}\)为等比数列,公比为\(-2\).
    当\(a_1-\dfrac{3}{5}=0\),即 \(a_1=\dfrac{3}{5}\)时,数列\(\left\{a_n-\dfrac{3^n}{5}\right\}\)不是等比数列.
    (2) \(a_1=\dfrac{3}{5}\)时, \(a_n=\dfrac{3^n}{5}\),为单调递增数列,满足条件.
    \(a_1 \neq \dfrac{3}{5}\)时,由(1)可得: \(a_n-\dfrac{3^n}{5}=\left(a_1-\dfrac{3}{5}\right)(-2)^{n-1}\),
    若\(\{S_n\}\)是递增数列,则\(S_n-S_{n-1}>0(n≥2)\),即\(a_n>0(n≥2\)),
    \(\therefore a_n=\left(a_1-\dfrac{3}{5}\right)(-2)^{n-1}+\dfrac{3^n}{5}>0\),
    (问题变成恒成立问题,可想到分离参数法,遇到 \((-2)^{n-1}\)想到分\(n\)奇偶数讨论)
    当\(n\)为偶数,则 \(-2^n\left(a_1-\dfrac{3}{5}\right)+\dfrac{3^n}{5}>0 \Rightarrow a_1<\dfrac{2}{5} \cdot\left(\dfrac{3}{2}\right)^n+\dfrac{3}{5}\),
    故\(a_1<\dfrac{2}{5} \cdot\left(\dfrac{3}{2}\right)^2+\dfrac{3}{5}=\dfrac{3}{2}\),( \(f(n)=\dfrac{2}{5} \cdot\left(\dfrac{3}{2}\right)^n+\dfrac{3}{5}\)是增数列, \(f_{\min }=f(2)\))
    当\(n\)为奇数,则 \(2^n\left(a_1-\dfrac{3}{5}\right)+\dfrac{3^n}{5}>0 \Rightarrow a_1<-\dfrac{2}{5} \cdot\left(\dfrac{3}{2}\right)^n+\dfrac{3}{5}\),
    故 \(a_1>-\dfrac{2}{5} \cdot\left(\dfrac{3}{2}\right)^3+\dfrac{3}{5}=-\dfrac{3}{4}\),( \(f(n)=-\dfrac{2}{5} \cdot\left(\dfrac{3}{2}\right)^n+\dfrac{3}{5}\)是减数列, \(f_{\max }=f(3)\))
    \(\therefore-\dfrac{3}{4}<a_1<\dfrac{3}{2}\).且 \(a_1 \neq \dfrac{3}{5}\).
    综上可得: \(-\dfrac{3}{4}<a_1<\dfrac{3}{2}\).
     

【C组---拓展题】

1.数字\(1,2,3,…,n(n≥2)\)的任意一个排列记作\((a_1,a_2,…,a_n)\),设\(S_n\)为所有这样的排列构成的集合.集合\(A_n=\{(a_1,a_2,…,a_n)∈S_n |\)任意整数\(i\),\(j\),\(1≤i<j≤n\),都有\(a_i-i≤a_j-j\}\);集合\(B_n=\{(a_1,a_2,…,a_n\}∈S_n |\)任意整数\(i\),\(j\),\(1≤i<j≤n\),都有\(a_i+i≤a_j+j\}\).
  (1)用列举法表示集合\(A_3\),\(B_3\)
  (2)求集合\(A_n∩B_n\)的元素个数;
  (3)记集合\(B_n\)的元素个数为\(b_n\).证明:数列\(\{b_n\}\)是等比数列.
 
 
 
 

参考答案

  1. 答案 (1)\(A_3=\{(1,2,3)\}\),\(B_3=\{(1,2,3),(1,3,2),(2,1,3),(3,2,1)\}\) ;
    (2) \(1\) ;(3) 略.
    解析 (1) (列出\(S_n\)所有项逐一检验,对于集合\(A_n\)可理解\(f(n)=a_n-n\)不是减数列,
    对于集合\(B_n\)可理解\(f(n)=a_n+n\)不是减数列)
    \(A_3=\{(1,2,3)\}\),\(B_3=\{(1,2,3),(1,3,2),(2,1,3),(3,2,1)\}\).
    (2)考虑集合\(A_n\)中的元素\((a_1,a_2,…,a_n)\).
    由已知,对任意整数\(1≤i<j≤n\),都有\(a_i-i≤a_j-j\),
    所以\((a_i-i)+i<(a_j-j)+j\),
    所以\(a_i<a_j\).
    由\(i\),\(j\)的任意性可知,\((a_1,a_2,…,a_n)\)是\(1,2,3,…,n\)的单调递增排列,
    所以\(A_n=\{(1,2,3,…,n)\}\).
    又因为当\(a_k=k(k∈N^*,1≤k≤n)\)时,对任意整数\(i\),\(j\),\(1≤i<j≤n\),
    都有\(a_i+i≤a_j+j\).
    所以\((1,2,3,…,n)∈B_n\),所以\(A_n⊆B_n\).
    所以集合\(A_n∩B_n\)的元素个数为\(1\).
    (3)由(2)知,\(b_n≠0\).
    因为\(B_2=\{(1,2),(2,1)\}\),所以\(b_2=2\).
    当\(n≥3\)时,考虑\(B_n\)中的元素\((a_1,a_2,…,a_n)\).
    (讨论\(n\)在\(B_n\)中的位置)
    (1)假设\(a_k=n(1≤k<n)\).由已知,\(a_k+k≤a_{k+1}+(k+1)\),
    所以\(a_{k+1}≥a_k+k-(k+1)=n-1\),
    又因为\(a_{k+1}≤n-1\),所以\(a_{k+1}=n-1\).
    依此类推,若\(a_k=n\),则\(a_{k+1}=n-1\),\(a_{k+2}=n-2\),…,\(a_n=k\).
    ①若\(k=1\),则满足条件的\(1,2,3,…,n\)的排列\((a_1,a_2,…,a_n)\)有\(1\)个.
    ②若\(k=2\),则\(a_2=n\),\(a_3=n-1\),\(a_4=n-2\),…,\(a_n=2\).
    所以\(a_1=1\).
    此时满足条件的\(1,2,3,…,n\)的排列\((a_1,a_2,…,a_n)\)有\(1\)个.
    ③若\(2<k<n\),
    只要\((a_1,a_2,a_3,…a_{k-1})\)是\(1,2,3,…,k-1\)的满足条件的一个排列,就可以相应得到\(1,2,3,…,n\)的一个满足条件的排列.
    (把问题转化为\(n=k-1\)的情况,这方法巧妙,可得到\(b_n\)的一递推公式)
    此时,满足条件的\(1,2,3,…,n\)的排列\((a_1,a_2,…,a_n)\)有\(b_{k-1}\)个.
    (2)假设\(a_n=n\),只需\((a_1,a_2,a_3,…a_{n-1})\)是\(1,2,3,…,n-1\)的满足条件的排列,此时满足条件的\(1,2,3,…,n\)的排列\((a_1,a_2,…,a_n)\)有\(b_{n-1}\)个.
    综上\(b_n=1+1+b_2+b_3+⋯+b_{n-1}\),\(n≥3\).
    因为\(b_3=1+1+b_2=4=2b_2\),
    且当\(n≥4\)时,\(b_n=(1+1+b_2+b_3+⋯+b_{n-2})+ b_{n-1}=2b_{n-1}\),
    所以对任意\(n∈N^*\),\(n≥3\),都有 \(\dfrac{b_n}{b_{n-1}}=2\).
    所以\(\{b_n\}\)成等比数列.
     

标签:right,等比数列,4.3,dfrac,therefore,qquad,left,通项
From: https://www.cnblogs.com/zhgmaths/p/16953154.html

相关文章

  • 4.1 数列的概念1(概念、通项公式)
    \({\color{Red}{欢迎到学科网下载资料学习}}\)[【基础过关系列】高二数学同步精品讲义与分层练习(人教A版2019)](https://www.zxxk.com/docpack/2875423.html)\({\col......
  • 《图解TCP/IP》 阅读笔记 (第四章 4.1、4.2、4.3)
    第4章IP协议4.1IP即网络协议网络层主要由IP和ICMP协议组成。本章详谈IP协议。IP协议就相当于OSI七层模型中的第三层,网络层,实现的是点到点通信(要和传输层的端到端通信......
  • 5.4.3 正切函数的性质与图象
    \({\color{Red}{欢迎到学科网下载资料学习}}\)【基础过关系列】2022-2023学年高一数学上学期同步知识点剖析精品讲义(人教A版2019)\({\color{Red}{跟贵哥学数学,so\qua......
  • 如何创建一个ipa How to create an IPA (Xcode 4.3)
    WiththereleaseofXcode4.3,ApplehasmadeiteveneasiertogenerateanIPA.However,someofthesechangeshavecausedsomeconfusionwithsomeusers.This......
  • 尚医通项目-微信登陆-无法显示二维码的解决方案
    尚医通的多人文档里面给了无法显示二维码的解决方案,感谢不知名老哥所以在service_user模块里修改配置文件:wx.open.app_id=wxed9954c01bb89b47wx.open.app_secret=a74......
  • 操作系统迁移实战之Apache 2.4.39 移植
    ApacheHTTPServer(简称Apache)是Apache软件基金会的一个开放源码的网页服务器,可以在大多数计算机操作系统中运行,由于其多平台和安全性被广泛使用,是最流行的Web服务器端软件......
  • 24.3 向量化异常VEH--《Windows核心编程》
    Windows提供了向量化异常处理(vectoredexcepationhanding,VEH)机制。程序可以注册一个函数,每当异常发送或者一个未处理异常脱离标准SEH的控制时,这个函数就会被调用。PVO......
  • 11.24.3
    #include<stdio.h>voidfun(ints[][10],intb[],int*p,intm,intn);intmain(){intp; intm,n,i,j,a[1000][10],b[1000]; scanf("%d%d",&m,&n); for(i=0;i<m......
  • 启明智显 | 4.3寸串口屏应用于充电桩的解决方案
    据数据显示,全球新能源汽车销量正大幅度增长,全球汽车电动化渗透率也由0.8%增长到7.74%,这不仅意味着汽车产业电动化浪潮的来临,也证实了我国新能源汽车行业正处于高速发展状态......
  • 关于斐波那契数列通项
    1.生成函数对于任意数列\(\{a_n\}\),函数\[f(x)=\sum_{n=0}^\inftya_nx^n\]称为数列\(\{a_n\}\)的普通型生成函数生成函数中的\(x\)并无实际意义,一般不用考虑是否收......