首页 > 其他分享 >【Basic Abstract Algebra】Exercises for Section 3.5 — Fundamental Isomorphism theorem of group

【Basic Abstract Algebra】Exercises for Section 3.5 — Fundamental Isomorphism theorem of group

时间:2024-12-26 22:41:25浏览次数:3  
标签:mathbb lang rang Isomorphism group Algebra varphi HK cong

  1. Let \(G=\{(a,b)\mid a,b\in\mathbb R,~a\neq0\}\) with \((a,b)(c,d)=(ac,ad+b)\) be a group, \(K=\{(1,b)\mid b\in\mathbb R\}\). Show that \(G/K\cong\mathbb R^*\).
    Proof: Let

    \[\begin{aligned} \varphi:\quad G&\to\mathbb R^*\\ (a,b)&\to a^2 \end{aligned} \]

    be a map. For any \((a,b),~(c,d)\in G\), we have

    \[\varphi((a,b)(c,d))=\varphi((ac,ad+b))=(ac)^2=a^2c^2=\varphi((a,b))\varphi((c,d)), \]

    thus \(\varphi\) is a homomorphism. For any \(y\in\mathbb R^*\), there exist \((\sqrt y,c)\in G\), s.t. \(\varphi((\sqrt{y},c))=y\). Thus, \(\text{Im}\varphi=\mathbb R^*\). By the First Isomorphism Theorem, we have \(G/\ker\varphi\cong\text{Im}\varphi=\mathbb R^*\). #

  2. Let \(m\in\mathbb Z\) and \(m>1\), \(\begin{aligned}\varphi:\quad\mathbb Z&\to\mathbb Z_m\\a&\mapsto\bar a\end{aligned}\). Prove that \(\mathbb Z/\lang m\rang\cong\mathbb Z_m\).
    Proof: For any \(a,b\in\mathbb Z\), we have

    \[\varphi(a+b)=\overline{a+b}=\bar a+\bar b=\varphi(a)+\varphi(b), \]

    so \(\varphi\) is a homomorphism. Let \(x\in\ker\varphi\), i.e., \(\varphi(x)=\bar 0\), then \(x=km\in\lang m\rang,~k\in\mathbb Z\Rightarrow \ker\varphi\subseteq\lang m\rang\). For any \(x\in\lang m\rang\), we have \(x=km,~k\in\mathbb Z\), so \(\varphi(x)=\overline{km}=\bar 0\Rightarrow \lang m\rang\subseteq \ker\varphi\). Thus, \(\ker\varphi=\lang m\rang\). And \(\text{Im}\varphi=\mathbb Z_m\). By the First Isomorphism Theorem, we have \(\mathbb Z/\lang m\rang\cong\mathbb Z_m\). #

  3. Let \(H,K\triangleleft G\), show that \(G/HK\cong(G/H)/(HK/H)\).
    Proof: For any \(hk\in HK\), where \(h\in H,~k\in K\). For any \(g\in G\), we have \(g(hk)g^{-1}=(ghg^{-1})(gkg^{-1})\). Since \(H\triangleleft G\) and \(K\triangleleft G\), we have \(ghg^{-1}\in H\) and \(gkg^{-1}\in K\), thus \(g(hk)g^{-1}\in HK\). Therefore, \(HK\triangleleft G\). Since \(H\triangleleft G\) , \(HK\triangleleft G\) and \(H\subseteq HK\), by the Third Isomorphism Theorem of groups, we have

    \[G/HK\cong(G/H)/(HK/H).\quad\# \]

标签:mathbb,lang,rang,Isomorphism,group,Algebra,varphi,HK,cong
From: https://www.cnblogs.com/sufewsj/p/18634339

相关文章

  • 【Basic Abstract Algebra】Exercises for Section 3.3 — Homomorphism of groups
    Findoutallpossiblehomomorphismfrom\(\mathbbZ_7\to\mathbbZ_{12}\).Solution:Let\(\varphi\)besuchahomomorphism.Since\(\mathbbZ_7\)isacyclicgroup,so\(\varphi\)isspecifiedby\(\varphi(\bar1)\).Since\(o(\bar1)=7......
  • 【Basic Abstract Algebra】Exercises for Section 3.2 — Normal subgroups and fact
    If\(H<G\)and\([G:H]=2\),showthat\(H\triangleleftG\).Proof:If\([G:H]=2\),then\(gH=Hg\)forall\(g\inG\),so\(H\triangleleftG\).【BasicAbstractAlgebra】ExercisesforSection3.1—CosetsandLagrange'sTheorem-只会......
  • MySQL-this is incompatible with sql_mode=only_full_group_by错误
    项目场景有时候,遇到数据库重复数据,需要将数据进行分组,并取出其中一条来展示,这时就需要用到groupby语句。但是,如果mysql是高版本,当执行groupby时,select的字段不属于groupby的字段的话,SQL语句就会报错。报错信息如下:Expression#1ofSELECTlistisnotinGROUPBYclausea......
  • Go 并发控制:sync.WaitGroup 详解 GoCN 2024年12月24日 16:37 浙江 听全文
    Go并发控制:sync.WaitGroup详解GoCN  2024年12月24日16:37 浙江 听全文 以下文章来源于Go编程世界 ,作者江湖十年Go编程世界.不限于Golang、Docker、Kubernetes,技术博客https://jianghushinian.cn/的移动版。前段时间我在《Go并发控制:errgroup详解》......
  • 【Basic Abstract Algebra】Exercises for Section 3.1 — Cosets and Lagrange's The
    Let\(G\)beafinitegroupand\(H<G\).If\([G:H]=2\),then\(gH=Hg\).Proof:If\([G:H]=2\),thenthereareonlytwocosetsof\(H\)in\(G\),andoneofthecosetsis\(H\)itself,i.e.,\[G=H\cupgH=H\cupHg,\]where\(H\cap......
  • 【Basic Abstract Algebra】Exercises for Section 2.5 — Dihedral groups
    Writedownthedihedralgroup\(D_5\).Solution:\(D_5=\langr,s\mids^2=r^5=1,~srs=r^{-1}\rang\),where\(r=(12345),~s=(15)(24)\),i.e.\(D_5=\{\text{id},s,r,r^2,r^3,r^4,rs,r^2s,r^3s,r^4s\}\).Wehave\[\begin{aligned}&r^2=(13524),~r......
  • pyqt5之GroupBox
    importsysfromPyQt5.QtWidgetsimportQApplication,QGroupBox,QVBoxLayout,QPushButton,QWidgetapp=QApplication(sys.argv)#创建一个QWidget作为主窗口main_widget=QWidget()#创建一个QGroupBoxgroupBox=QGroupBox("我的分组框")groupBox.setStyleS......
  • linux cgroup统一的层次结构文档
    cgroup统一的层次结构本文档描述了统一层次结构所做的更改及其基本原理。它最终将被合并到主cgroup文档中。目录背景基本操作底座cgroup.subtree_controlcgroup.controllers结构约束自上而下的没有内部任务。其他改动[Un]populatedNotification其他核心变化......
  • 6.Group组件
    关于Group组件的简单介绍首先,Group组件本身并不是一个“布局”类的组件,它只是一个容器,没有提供调整内部组件展示位置的方法,也就是说,当我们将多个组件(比如button)放在group中时,他们(根据流式规则?)会全部挤在窗口的左上角,当然,如果我们没有设置组件的大小的话,那么大小也是默认的。......
  • LOOP GROUP用法
    1、分组根据维度分组,处理内表中不同维度值的数据TYPES:BEGINOFty_alv,matnrTYPEmarc-matnr,"物料werksTYPEmarc-werks,"工厂bdmngTYPEresb-bdmng,"数量zjTYPEresb-bdmng,"汇总checkboxTYPEchar......