首页 > 其他分享 >从DDPM到DDIM(四) 预测噪声与后处理

从DDPM到DDIM(四) 预测噪声与后处理

时间:2024-07-29 18:18:03浏览次数:8  
标签:right mathbf sqrt 后处理 overline DDPM alpha DDIM left

从DDPM到DDIM(四) 预测噪声与后处理

前情回顾

下图展示了DDPM的双向马尔可夫模型。
img

训练目标。最大化证据下界等价于最小化以下损失函数:

\[\boldsymbol{\theta}^*=\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{t=1}^T \frac{1}{2 \sigma^2(t)} \frac{\left(1-\alpha_t\right)^2 \overline{\alpha}_{t-1}}{\left(1-\overline{\alpha}_t\right)^2} \mathbb{E}_{q\left(\mathbf{x}_t \mid \mathbf{x}_0\right)}\left[\Vert\tilde{\mathbf{x}}_{\boldsymbol{\theta}}\left(\mathbf{x}_t, t\right)-\mathbf{x}_0\Vert_2^2\right] \tag{1} \]

推理过程。推理过程利用马尔可夫链蒙特卡罗方法。

\[\begin{aligned} \mathbf{x}_{t-1} &\sim p_{\theta}\left(\mathbf{x}_{t-1} | \mathbf{x}_{t}\right) = \mathcal{N}(\mathbf{x}_{t-1}; \tilde{\bm{\mu}}_{\theta}\left(\mathbf{x}_{t}, t\right) , \sigma^2 \left(t\right) \mathbf{I}) \\ \mathbf{x}_{t-1} &= \tilde{\bm{\mu}}_{\theta}\left(\mathbf{x}_{t}, t\right) + \sigma \left(t\right) \bm{\epsilon} \\ &= \frac{\left( 1 - \overline{\alpha}_{t-1} \right) \sqrt{\alpha_t}}{\left( 1 - \overline{\alpha}_{t} \right)} \mathbf{x}_{t} + \frac{\left(1 - \alpha_t\right) \sqrt{\overline{\alpha}_{t-1}}}{\left( 1 - \overline{\alpha}_{t} \right)} \tilde{\mathbf{x}}_{\theta} \left(\mathbf{x}_{t}, t\right) + \sigma \left(t\right) \bm{\epsilon} \end{aligned} \tag{2} \]

1、预测噪声

  上一篇文章我们提到,扩散模型的神经网络用于预测 \(\mathbf{x}_{0}\),然而DDPM并不是这样做的,而是用神经网络预测噪声。这也是DDPM 第一个字母 D(Denoising)的含义。为什么采用预测噪声的参数化方法?DDPM作者在原文中提到去噪分数匹配(denoising score matching, DSM),并说这样训练和DSM是等价的。可见应该是收了DSM的启发。另外一个解释我们一会来讲。

  按照上一篇文章的化简技巧,对于神经网络的预测输出 \(\tilde{\mathbf{x}}_{\boldsymbol{\theta}}\left(\mathbf{x}_t, t\right)\),也可以进行进一步参数化(parameterization):
已知:

\[\begin{aligned} \mathbf{x}_{t} = \sqrt{\overline{\alpha}_t} \mathbf{x}_{0} + \sqrt{1 - \overline{\alpha}_t} \bm{\epsilon} \end{aligned} \tag{3} \]

于是:

\[\begin{aligned} \mathbf{x}_{0} = \frac{1}{\sqrt{\overline{\alpha}_t}} \mathbf{x}_{t} + \frac{\sqrt{1 - \overline{\alpha}_t}}{\sqrt{\overline{\alpha}_t}} \bm{\epsilon} \end{aligned} \tag{4} \]

\[\begin{aligned} \tilde{\mathbf{x}}_{\boldsymbol{\theta}}\left(\mathbf{x}_t, t\right) = \frac{1}{\sqrt{\overline{\alpha}_t}} \mathbf{x}_{t} + \frac{\sqrt{1 - \overline{\alpha}_t}}{\sqrt{\overline{\alpha}_t}} \tilde{\bm{\epsilon}}_{\boldsymbol{\theta}}\left(\mathbf{x}_t, t\right) \end{aligned} \tag{5} \]

这里我们解释以下为什么采用预测噪声的方式的第二个原因。从(4)(5)两式可见,噪声项可以看作是 \(\mathbf{x}_{0}\) 与 \(\mathbf{x}_{t}\) 的残差项。回顾经典的Resnet结构:

\[\left[\mathbf{y}=\mathbf{x}+\mathcal{F}\left(\mathbf{x}, W_i\right)\right] \]

Resnet也是用神经网络学习的残差项。DDPM采用预测噪声的方法和Resnet残差学习由异曲同工之妙。

  下面我们将(3)(4)两式代入(1)式,继续化简,有:

\[\begin{aligned} \Vert\tilde{\mathbf{x}}_{\boldsymbol{\theta}}\left(\mathbf{x}_t, t\right)-\mathbf{x}_0\Vert_2^2 &= \frac{1 - \overline{\alpha}_t}{\overline{\alpha}_t} \Vert\tilde{\bm{\epsilon}}_{\boldsymbol{\theta}}\left(\mathbf{x}_t, t\right)-\bm{\epsilon}\Vert_2^2 \end{aligned} \]

注意 \(\overline{\alpha}_t\) = \(\overline{\alpha}_{t-1} \alpha_t\)于是可以得出新的优化方程:

\[\boldsymbol{\theta}^*=\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{t=1}^T \frac{1}{2 \sigma^2(t)} \frac{\left(1-\alpha_t\right)^2}{\left(1-\overline{\alpha}_t\right) \alpha}_t \mathbb{E}_{q\left(\mathbf{x}_t \mid \mathbf{x}_0\right)}\left[\Vert\tilde{\bm{\epsilon}}_{\boldsymbol{\theta}}\left(\sqrt{\overline{\alpha}_t} \mathbf{x}_{0} + \sqrt{1 - \overline{\alpha}_t} \bm{\epsilon}, t\right)-\bm{\epsilon}\Vert_2^2\right] \tag{6} \]

(6) 式表示,我们的神经网络 \(\tilde{\bm{\epsilon}}_{\boldsymbol{\theta}}\left(\sqrt{\overline{\alpha}_t} \mathbf{x}_{0} + \sqrt{1 - \overline{\alpha}_t} \bm{\epsilon}, t\right)\) 被用于预测最初始的噪声 \(\bm{\epsilon}\)。忽略掉前面的系数,对应的训练算法如下:


Algorithm 3 . Training a Deniosing Diffusion Probabilistic Model. (Version: Predict noise)

Repeat the following steps until convergence.

  • For every image \(\mathbf{x}_0\) in your training dataset \(\mathbf{x}_0 \sim q\left(\mathbf{x}_0\right)\)
  • Pick a random time step \(t \sim \text{Uniform}[1, T]\).
  • Generate normalized Gaussian random noise \(\bm{\epsilon} \sim \mathcal{N} \left(\mathbf{0}, \mathbf{I}\right)\)
  • Take gradient descent step on

\[\nabla_{\boldsymbol{\theta}} \Vert\tilde{\bm{\epsilon}}_{\boldsymbol{\theta}}\left(\sqrt{\overline{\alpha}_t} \mathbf{x}_{0} + \sqrt{1 - \overline{\alpha}_t} \bm{\epsilon}, t\right)-\bm{\epsilon}\Vert_2^2 \]

You can do this in batches, just like how you train any other neural networks. Note that, here, you are training one denoising network \(\tilde{\bm{\epsilon}}_{\boldsymbol{\theta}}\) for all noisy conditions.


推理的过程依然从马尔可夫链蒙特卡洛(MCMC)开始,因为这里是预测噪声,而推理的过程中也需要加噪声,为了区分,我们将推理过程中添加的噪声用 \(\mathbf{z} \sim \mathcal{N} \left(\mathbf{0}, \mathbf{I}\right)\) 来表示。推理过程中每次推理的噪声 \(\mathbf{z}\) 都是不同的,但训练过程中要拟合的最初的目标噪声 \(\bm{\epsilon}\) 是相同的

\[\begin{aligned} \mathbf{x}_{t-1} &\sim p_{\theta}\left(\mathbf{x}_{t-1} | \mathbf{x}_{t}\right) = \mathcal{N}(\mathbf{x}_{t-1}; \tilde{\bm{\mu}}_{\theta}\left(\mathbf{x}_{t}, t\right) , \sigma^2 \left(t\right) \mathbf{I}) \\ \mathbf{x}_{t-1} &= \tilde{\bm{\mu}}_{\theta}\left(\mathbf{x}_{t}, t\right) + \sigma \left(t\right) \mathbf{z} \\ &= \frac{\left( 1 - \overline{\alpha}_{t-1} \right) \sqrt{\alpha_t}}{\left( 1 - \overline{\alpha}_{t} \right)} \mathbf{x}_{t} + \frac{\left(1 - \alpha_t\right) \sqrt{\overline{\alpha}_{t-1}}}{\left( 1 - \overline{\alpha}_{t} \right)} \tilde{\mathbf{x}}_{\theta} \left(\mathbf{x}_{t}, t\right) + \sigma \left(t\right) \mathbf{z} \end{aligned} \tag{7} \]

将(5)式代入:

\[\begin{aligned} \tilde{\bm{\mu}}_{\theta}\left(\mathbf{x}_{t}, t\right) &= \frac{\left( 1 - \overline{\alpha}_{t-1} \right) \sqrt{\alpha_t}}{\left( 1 - \overline{\alpha}_{t} \right)} \mathbf{x}_{t} + \frac{\left(1 - \alpha_t\right) \sqrt{\overline{\alpha}_{t-1}}}{\left( 1 - \overline{\alpha}_{t} \right)} \tilde{\mathbf{x}}_{\theta} \left(\mathbf{x}_{t}, t\right) \\ &= \frac{\left( 1 - \overline{\alpha}_{t-1} \right) \sqrt{\alpha_t}}{\left( 1 - \overline{\alpha}_{t} \right)} \mathbf{x}_{t} + \frac{\left(1 - \alpha_t\right) \sqrt{\overline{\alpha}_{t-1}}}{\left( 1 - \overline{\alpha}_{t} \right)} \left( \frac{1}{\sqrt{\overline{\alpha}_t}} \mathbf{x}_{t} + \frac{\sqrt{1 - \overline{\alpha}_t}}{\sqrt{\overline{\alpha}_t}} \tilde{\bm{\epsilon}}_{\boldsymbol{\theta}}\left(\mathbf{x}_t, t\right) \right) \\ &= \text{some algebra calculation} \\ &= \frac{1}{\sqrt{\overline{\alpha}_t}} \mathbf{x}_{t} + \frac{1 - \alpha_t}{ \sqrt{ \left( 1 - \overline{\alpha}_{t} \right)\alpha}_t} \tilde{\bm{\epsilon}}_{\boldsymbol{\theta}}\left(\mathbf{x}_t, t\right) \end{aligned} \]

所以推理的表达式为:

\[\begin{aligned} \mathbf{x}_{t-1} &= \frac{1}{\sqrt{\overline{\alpha}_t}} \mathbf{x}_{t} + \frac{1 - \alpha_t}{ \sqrt{ \left( 1 - \overline{\alpha}_{t} \right)\alpha}_t} \tilde{\bm{\epsilon}}_{\boldsymbol{\theta}}\left(\mathbf{x}_t, t\right) + \sigma \left(t\right) \mathbf{z} \end{aligned} \tag{7} \]

下面可以写出采用拟合噪声策略的推理算法:


Algorithm 4 . Inference on a Deniosing Diffusion Probabilistic Model. (Version: Predict noise)

You give us a white noise vector \(\mathbf{x}_T \sim \mathcal{N} \left(\mathbf{0}, \mathbf{I}\right)\)

Repeat the following for \(t = T, T − 1, ... , 1\).

  • Generate \(\mathbf{z} \sim \mathcal{N} \left(\mathbf{0}, \mathbf{I}\right)\) if \(t > 1\) else \(\mathbf{z} = \mathbf{0}\)

\[\mathbf{x}_{t-1} = \frac{1}{\sqrt{\overline{\alpha}_t}} \mathbf{x}_{t} + \frac{1 - \alpha_t}{ \sqrt{ \left( 1 - \overline{\alpha}_{t} \right)\alpha}_t} \tilde{\bm{\epsilon}}_{\boldsymbol{\theta}}\left(\mathbf{x}_t, t\right) + \sigma \left(t\right) \mathbf{z} \]

Return \(\mathbf{x}_{0}\)


2、后处理

首先要注意到,在推理算法的最后一步,生成图像的时候,并没有添加噪声,而是直接采用预测的均值作为 \(\mathcal{x}_0\) 的估计值。

另外,生成的图像原本是归一化到 \([-1, 1]\) 之间的,所以要反归一化到 \([0, 255]\)。这里比较简单,直接看 diffusers 库中的代码:


image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
    image = self.numpy_to_pil(image)

if not return_dict:
    return (image,)


def numpy_to_pil(images):
    """
    Convert a numpy image or a batch of images to a PIL image.
    """
    if images.ndim == 3:
        images = images[None, ...]
    images = (images * 255).round().astype("uint8")
    if images.shape[-1] == 1:
        # special case for grayscale (single channel) images
        pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
    else:
        pil_images = [Image.fromarray(image) for image in images]

    return pil_images

3、总结

  我们最初的目标是估计图像的概率分布,采用极大似然估计法,求 \(\log p\left(\mathbf{x}_0\right)\)。但是直接求解,很难求:

\[\begin{aligned} p\left(\mathbf{x}_0\right) = \int p\left(\mathbf{x}_{0:T}\right) d \mathbf{x}_{1:T} \\ \end{aligned} \\ \]

  而且 \(p\left(\mathbf{x}_{0:T}\right)\) 也不知道。于是我们选择估计它的证据下界。在计算证据下界的过程中,我们解析了双向马尔可夫链中的很多分布和变量,最终推导出证据下界的表达式,以KL散度的方式来表示。这样做本质上是用已知的分布 \(q\left(\mathbf{x}_{1:T} | \mathbf{x}_{0}\right)\) 来对未知的分布做逼近。这其实是 变分推断 的思想。变分法是寻找一个函数使得这个函数最能满足条件,而变分推断是寻找一个分布使之更加逼近已知的分布。

  于是我们而在高斯分布的假设下,KL散度恰好等价于二范数的平方。最大似然估计等价于最小化二范数loss。之后就顺理成章地推导出了训练方法,并根据马尔可夫链蒙特卡洛推导出推理算法。关于变分推断和马尔可夫链蒙特卡洛相关的知识,读者可以自行查找,有时间我也会写篇文章来介绍。

  以上就是DDPM的全部内容了,我用了四篇文章对DDPM进行了详细推导,写文章的过程中也弄懂了自己之前不懂的一些细节。我的最大的感受是,初学者千万不要相信诸如《一文读懂DDPM》之类的文章,如果要真正搞懂DDPM,只有自己把所有公式手推一边才是正道。

下一篇我们开始介绍DDPM的一个经典的推理加速方法:DDIM

标签:right,mathbf,sqrt,后处理,overline,DDPM,alpha,DDIM,left
From: https://www.cnblogs.com/txdt/p/18330754

相关文章

  • Diffusion|DDPM 理解、数学、代码
    Diffusion论文:DenoisingDiffusionProbabilisticModels参考博客openinnewwindow;参考paddle版本代码:aistudio实践链接openinnewwindow该文章主要对DDPM论文中的公式进行小白推导,并根据ppdiffuser进行DDPM探索。读者能够对论文中的大部分公式如何得来,用在了什么......
  • Diffusion|DDIM 理解、数学、代码
    DIFFUSION系列笔记|DDIM数学、思考与ppdiffuser代码探索论文:DENOISINGDIFFUSIONIMPLICITMODELS参考博客openinnewwindow;参考aistudionotebook链接,其中包含详细的公式与代码探索:linkopeninnewwindow该文章主要对DDIM论文中的公式进行小白推导,同时笔者将使用......
  • 从DDPM到DDIM(三) DDPM的训练与推理
    从DDPM到DDIM(三)DDPM的训练与推理前情回顾首先还是回顾一下之前讨论的成果。扩散模型的结构和各个概率模型的意义。下图展示了DDPM的双向马尔可夫模型。其中\(\mathbf{x}_T\)代表纯高斯噪声,\(\mathbf{x}_t,0<t<T\)代表中间的隐变量,\(\mathbf{x}_0\)代表生成的图像......
  • SpringBoot原理解析(二)- Spring Bean的生命周期以及后处理器和回调接口
    SpringBoot原理解析(二)-SpringBean的生命周期以及后处理器和回调接口文章目录SpringBoot原理解析(二)-SpringBean的生命周期以及后处理器和回调接口1.Bean的实例化阶段1.1.Bean实例化的基本流程1.2.Bean实例化图例1.3.实例化阶段的后处理器1.3.1.实例化阶段后处理器......
  • InvalidDimensionException:嵌入维度 384 与集合维度 1536 不匹配
    我正在Chromadb上编写python代码来创建矢量数据库我尝试在chromadb中创建包含嵌入的集合。在使用包括嵌入的矢量数据库创建索引期间,我面临这个问题出现错误信息“InvalidDimensionException:嵌入维度384与集合维度1536不匹配”的原因是,你正尝试将维度为384的......
  • 使用Pytorch中从头实现去噪扩散概率模型(DDPM)
    扩散模型通常是一种生成式深度学习模型,它通过学习去噪过程来创建数据。扩散模型有许多变体,其中最流行的是条件文本模型,能够根据提示生成特定的图像。某些扩散模型(如Control-Net)甚至能将图像与某些艺术风格融合。在本文中,我们将构建基础的无条件扩散模型,即去噪扩散概率模型(DDPM)。......
  • 从DDPM到DDIM
    从DDPM到DDIM(一)现在网络上关于DDPM和DDIM的讲解有很多,但无论什么样的讲解,都不如自己推到一边来的痛快。笔者希望就这篇文章,从头到尾对扩散模型做一次完整的推导。DDPM是一个双向马尔可夫模型,其分为扩散过程和采样过程。扩散过程是对于图片不断加噪的过程,每一步添加少量的高......
  • PyFluent入门之旅(5)后处理
    接着PyFluent入门之旅(4)算例求解后我们已经完成了求解,并且保存了.dat的结果文件。现在可以利用Fluent内置的后处理功能进行图像与数据曲线的输出。1.计算结果文件的读取如果需要在计算完成后立即进行后处理,那么直接在求解代码后继续后处理代码的编写即可。如果已经有求......
  • 生成扩散模型漫谈(四):DDIM = 高观点DDPM
    相信很多读者都听说过甚至读过克莱因的《高观点下的初等数学》这套书,顾名思义,这是在学到了更深入、更完备的数学知识后,从更高的视角重新审视过往学过的初等数学,以得到更全面的认知,甚至达到温故而知新的效果。类似的书籍还有很多,比如《重温微积分》、《复分析:可视化方法》等。回到......
  • 生成扩散模型漫谈(一):DDPM = 拆楼 + 建楼
    说到生成模型,VAE、GAN可谓是“如雷贯耳”,本站也有过多次分享。此外,还有一些比较小众的选择,如flow模型、VQ-VAE等,也颇有人气,尤其是VQ-VAE及其变体VQ-GAN,近期已经逐渐发展到“图像的Tokenizer”的地位,用来直接调用NLP的各种预训练方法。除了这些之外,还有一个本来更小众的选择——扩......