前言
所有自然数的和相加为多少呢,即 \(1\)\(+\)\(2\)\(+\)\(3\)\(+\)\(4\)\(+\)\(5\)\(+\)\(6\)\(+\)\(\cdots\)\(=\)\(?\),估计我们都会说是 \(+\infty\),但数学家说 \(1\)\(+\)\(2\)\(+\)\(3\)\(+\)\(4\)\(+\)\(5\)\(+\)\(6\)\(+\)\(\cdots\)\(=\)\(-\cfrac{1}{12}\),那么数学家到底是如何计算的呢?
最简过程
解: \(S=1-1+1-1+1-1+1-1+\cdots\)
即,\(S=\)\(1-(1-1+1-1+1-1+1-1+\cdots)\)
则 \(S=1-S\),解得 \(S=\cfrac{1}{2}\) .
解:令 \(S_1=\)\(1\)\(+\)\(2\)\(+\)\(3\)\(+\)\(4\)\(+\)\(5\)\(+\)\(6\)\(+\)\(\cdots\) ①
再令 \(\quad\)\(S_2=\)\(1\)\(-\)\(2\)\(+\)\(3\)\(-\)\(4\)\(+\)\(5\)\(-\)\(6\)\(+\)\(\cdots\) ②
①-② 得到,\(S_1\)\(-\)\(S_2\)\(=\)\(4\)\(+\)\(8\)\(+\)\(12\)\(+\)\(16\)\(+\)\(\cdots\)$=$4(\(1\)\(+\)\(2\)\(+\)\(3\)\(+\)\(4\)\(+\)\(5\)\(+\)\(6\)\(+\)\(\cdots\))\(=\) \(4S_1\)
即 \(-3S_1=S_2\), 则 \(S_1=-\cfrac{1}{3}S_2\),以下重点求解 \(S_2\),
由于 \(S_2=\)\(1\)\(-\)\(2\)\(+\)\(3\)\(-\)\(4\)\(+\)\(5\)\(-\)\(6\)\(+\)\(\cdots\)
则 \(\quad\)\(S_2\)$=$0+\(1\)\(-\)\(2\)\(+\)\(3\)\(-\)\(4\)\(+\)\(5\)\(-\)\(6\)\(+\)\(\cdots\) \(\quad\) 此处用 \(0\) 补位,是为了错位相加,
则 \(2S_2=1-1+1-1+1-1+1-1+\cdots\),而由上题我们知道,\(1-1+1-1+1-1+1-1+\cdots=\cfrac{1}{2}\),
故 \(2S_2=\cfrac{1}{2}\), \(S_2=\cfrac{1}{4}\),代入 \(S_1=-\cfrac{1}{3}S_2\),
可得到, \(S_1=-\cfrac{1}{12}\),即 \(1\)\(+\)\(2\)\(+\)\(3\)\(+\)\(4\)\(+\)\(5\)\(+\)\(6\)\(+\)\(\cdots\)\(=\)\(-\cfrac{1}{12}\),逆天吧 .
标签:12,cfrac,cdots,数学,quad,逆天,科普 From: https://www.cnblogs.com/wanghai0666/p/18308194