端点效应与适当放缩
已知函数\(f(x)=e^x+\cos x-2,g(x)=\sin x\)
(1)证:当\(x>0\)时,\(g(x)<x<f(x)\)
(2)若\(x>0,f(x)+g(x)>ax\)恒成立,求\(a\)的取值范围.
解
(1)左边经典不等式,略
右边:\(x<e^x+\cos x-2\)
即证\(e^x+\cos x-2-x>0\)
记\(\varphi(x)=e^x+\cos x-2-x,\varphi^{\prime}(x)=e^x-\sin x-1>x+1-x-1=0\)
从而\(\varphi(x)>\varphi(0)=0\)
得证
(2)\(f(x)+g(x)=e^x+\cos x-2+\sin x\)
则\(e^x+\cos x-2+\sin x>ax\)恒成立
记\(\gamma(x)=e^x+\cos x-2+\sin x-ax\)
\(\gamma^{\prime}(x)=e^x-\sin x+\cos x-a,\gamma^{\prime\prime}(x)=e^x-\cos x-\sin x,\gamma^{\prime\prime\prime}(x)=e^x+\sin x-\cos x\)
\(\gamma(0)=0,\gamma^{\prime}(0)=2-a,\gamma^{\prime\prime}(0)=0\)
Case1当\(a\leq2\),因\(\sin x\leq x,\cos x\geq 1-\dfrac{x^2}{2},e^x\geq 1+x+\dfrac{x^2}{2}\)
从而放缩得:\(\gamma^{\prime}(x)>1+x+\dfrac{x^2}{2}-x+1-\dfrac{x^2}{2}-a=2-a\geq 0\)
从而\(\gamma(x)\)单调递增,则\(\gamma(x)>\gamma(0)=0\)合题
Case2当\(a>2\)时,\(\gamma^{\prime}(0)=2-a<0\)
\(\gamma^{\prime\prime\prime}(x)=e^x+\sqrt2\sin\left(x-\dfrac{\pi}{4}\right)\),在\(x\in\left(0,\dfrac{3\pi}{4}\right)\)上递增
从而\(\gamma^{\prime\prime\prime}(x)>\gamma^{\prime\prime\prime}(0)=0\)
则\(\gamma^{\prime\prime}(x)\)在\(x\in\left(0,\dfrac{3\pi}{4}\right)\)上单调递增,则\(\gamma^{\prime\prime}(x)>\gamma^{\prime\prime}(0)=0\)
则\(\gamma^{\prime}(x)\)在\(x\in\left(0,\dfrac{3\pi}{4}\right)\)上单调递增
因\(\gamma^{\prime}(0)<0\),从而一定存在一个区间\((0,m)\)
使得在\(x\in(0,m)\)上,\(\gamma^{\prime}(x)<0\)
从而\(\gamma(x)\)在\(x\in(0,m)\)上单调递减
则\(\gamma(x)<\gamma(0)=0\),矛盾!不合题
综上\(a\leq 2\)
标签:prime,cos,right,导数,dfrac,每日,69,sin,gamma From: https://www.cnblogs.com/manxinwu/p/18025535