有点硬凑的找点问题
已知函数\(f(x)=\dfrac{a}{2}e^{2x}+(a-2)e^x-\dfrac{x^2}{2}\)
(1)讨论\(f^{\prime}(x)\)单调性
(2)若\(x_1,x_2\)是\(f(x)\)的极值点,证明:\(x_2-x_1<\ln(3-a)-\ln a+\dfrac{2}{a}-1\)
解
(1)\(f^{\prime}(x)=ae^{2x}+(a-2)e^x-x\)
\(f^{\prime\prime}(x)=2ae^{2x}+(a-2)e^x-1=(2e^x+1)(ae^x-1)\)
当\(a\leq0\) 时,\(f^{\prime\prime}(x)\leq 0\),则\(f^{\prime}(x)\)单调递减
当\(a>0\)时,\(f^{\prime\prime}(-\ln a)=0\)
则\(f^{\prime}(x)\)在\((-\infty,-\ln a)\)递减,在\([-\ln a,+\infty)\)上增
(2) 由(1)要使\(f(x)\)有两个极值点,则要有\(a>0\),并且\(f^{\prime}(-\ln a)<0\)
则\(1-\dfrac{1}{a}-\ln\dfrac{1}{a}<0\)得\(a\in(0,1)\)
不妨设\(x_1<-\ln a<x_2\)
处理\(\ln(3-a)-\ln a+\dfrac{2}{a}-1\)为\(\ln\left(\dfrac{3}{a}-1\right)-\left(1-\dfrac{2}{a}\right)\)
①先说明\(-\ln a<x_2<\ln\left(\dfrac{3}{a}-1\right)\)
因\(f^{\prime}\left[\ln\left(\dfrac{3}{a}-1\right)\right]=a\left(\dfrac{3}{a}-1\right)^2+(a-2)\left(\dfrac{3}{a}-1\right)-\ln\left(\dfrac{3}{a}-1\right)=\left(\dfrac{3}{a}-1\right)-1-\ln\left(\dfrac{3}{a}-1\right)\)
因\(a\in(0,1)\),从而\(\dfrac{3}{a}-1\neq 1\)
则\(\left(\dfrac{3}{a}-1\right)-1-\ln\left(\dfrac{3}{a}-1\right)>\left(\dfrac{3}{a}-1\right)-1-\left[\left(\dfrac{3}{a}-1\right)-1\right]=0\)
由零点存在定理
\(-\ln a<x_2<\ln\left(\dfrac{3}{a}-1\right)\),并且是唯一的.
②再说明\(1-\dfrac{2}{a}<x_1<-\ln a\)
因\(f^{\prime}\left(1-\dfrac{2}{a}\right)=1-\dfrac{1}{a}-\ln\dfrac{1}{a}\)
因\(\ln x\leq x-1\)
从而\(1-\dfrac{1}{a}-\ln\dfrac{1}{a}>1-\dfrac{1}{a}-\left(1-\dfrac{1}{a}\right)>0\)
由零点存在定理\(1-\dfrac{2}{a}<x_1<-\ln a\),并且是唯一的.
从而\(x_2-x_1<\ln(3-a)-\ln a+\dfrac{2}{a}-1\)
标签:prime,right,导数,ln,dfrac,每日,2x,67,left From: https://www.cnblogs.com/manxinwu/p/18024196