该定理由 Songby 提出.
余面积公式
\[\iint \limits_D g(x,y)\text dS=\int_a^b \int \limits_L g(x,y)\frac{\text dy}{f_x}\text dz \]我们来证明这个定理.
画出 \(f(x,y)=z\) 和 \(f(x,y)=z+\Delta z\), 我们分别得到等值线 \(\overset{\LARGE{\frown}}{AC}\) 和 \(\overset{\LARGE{\frown}}{BD}\), 面积微元 \(\text dS\) 即为等值线间的面积.
考虑 \(\vec{AB}\) 与 \(\nabla f\) 的方向相同
\[\Delta r=|AB|=\sqrt{\Delta x^2+\Delta y^2}=\frac{(f_x,f_y)\cdot(\Delta x,\Delta y)}{\sqrt{f_x^2+f_y^2}}=\frac{\Delta z}{\sqrt{f_x^2+f_y^2}}\\ \]\[\text dr=\frac{\text dz}{\sqrt{f_x^2+f_y^2}} \]由弧长公式
\[\text dl=|\overset{\LARGE{\frown}}{AC}|=\sqrt{1+\left(\frac{f_x}{f_y}\right)^2}\text dx=\sqrt{1+\left(\frac{f_y}{f_x}\right)^2}\text dy \]因此
\[\text dS=\int\limits_L \text dl\cdot\text dr=\int\limits_{L^-} \frac{\text dx}{f_y}\text dz=\int\limits_{L} \frac{\text dy}{f_x}\text dz \]证毕.
值得注意的是 \(L\) 的取向. 若 \(L\) 为闭合曲线, \(\dfrac{\text dx}{f_y}\) 应选择顺时针, \(\dfrac{\text dy}{f_x}\) 应选择逆时针. 这点可以由 \(\text dS\) 恒为正值, \(\text dx, \text dy\) 是切向增量, \(f_x, f_y\) 是梯度分量简单得出.
例题
\(1.\quad \displaystyle{\iint\limits_{\mathbb R^2}\text e^{-(x^2+y^2)}\ \text dx\text dy}\)
\(2.\quad \displaystyle{\iint\limits_{D}\text e^{\frac{y}{x+y}}\ \text dx\text dy,\quad D=\left\{(x,y)\bigg|x+y\leq1,x\geq0,y\geq0\right\}}\)
\(3.\quad \displaystyle{\iint\limits_{D}\frac{(x+y)\ln\left(1+\frac{y}{x}\right)}{\sqrt{1-x-y}}\ \text dx\text dy,\quad D=\left\{(x,y)\bigg|x+y\leq1,x\geq0,y\geq0\right\}}\)
标签:多重,frac,limits,text,Delta,sqrt,积分,dy,合元 From: https://www.cnblogs.com/Arcticus/p/16768757.html