\(1.求I=\oiint_{\Sigma}(x-y+z)dydz+(y-z+x)dzdx+(z-x+y)dxdy,\\其中\Sigma为曲面|x-y+z|+|y-z+x|+|z-x+y|=1的外侧。\) \(2.计算\iint_{\Sigma}\frac{axdydz+(z+a)^2dxdy}{(x^2+y^2+z^2)^{\frac{1}{2}}},其中\Sigma为下半球面z=-\sqrt{a^2-x^2-y^2}的上侧,a>0。\) \(3.计算I=\iint_{\Sigma}(8y+1)xdydz+2(1-y^2)dzdx-4yzdxdy,\\其中\Sigma是yOz坐标面上的曲线段z=\sqrt{y-1}(1 \leq y \leq 3)绕y轴转一周生成的曲面的左侧。\) \(4.设球体(x-1)^2+(y-1)^2+(z-1)^2 \leq 12被平面P:x+y+z=6所截的小球缺为\Omega。 \\ 记球缺上的球冠为\Sigma,方向指向球外,求第二型曲面积分I=\iint_{\Sigma}xdydz+ydzdx+zdxdy。\\(若缺高为h,则球缺的体积为\frac{\pi}{3}(3R-h)h^2)\)
\[I=\iiint_V \frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}dxdydz=3\iiint_{V}dxdydz
\]
\[\left \{
\begin{array}{rcl}
&u=x-y+z \\
&v=y-z+x \\
&w=z-x+y
\end{array}
\right.
\]
\[\frac{\partial (x,y,z)}{\partial (u,v,w)}=\frac{1}{\frac{\partial (u,v,w)}{\partial (x,y,z)}}=\frac{1}{\begin{vmatrix}1&1&-1\\-1&1&1\\1&-1&1\end{vmatrix}}=\frac{1}{4}
\]
\[I=\frac{3}{4}\iiint_V dudvdw=\frac{3}{4}*8*\frac{1}{6}=1
\]
\[I=\iint_{\Sigma}\frac{axdydz+(z+a)^2dxdy}{(x^2+y^2+z^2)^{\frac{1}{2}}}=\iint_{\Sigma}\frac{axdydz+(z+a)^2dxdy}{a}
\]
\[-I=\iint_{\Sigma^{-}+\Sigma_1}+\iint_{\Sigma_1^{-}}=J_1+J_2
\]\[J_1=\frac{1}{a}\iiint_V(a+2(z+a))dxdydz=\frac{1}{a}\iiint_V(2z+3a)dxdydz
\]\[J_1=\frac{1}{a}\cdot3a\cdot \frac{2}{3}\pi a^3+\frac{1}{a}\int_{0}^{-a}\pi 2z(a^2-z^2)dz=2\pi a^3+\frac{1}{2}\pi a^3=\frac{5}{2}\pi a^3
\]
\[J_2=-\frac{1}{a}\iint_{\Sigma_1}a^2dxdy=-\pi a^3
\]\[I=-(J_1+J_2)=-\frac{3}{2}\pi a^3
\]
\[I=\iint_{\Sigma+\Sigma_1}+\iint_{\Sigma_1^-}=J_1+J_2
\]\[J_1=\iiint_{V}(8y+1-4y-4y)=\iiint_V=\int_{1}^{3}\pi(y-1)dy=2\pi
\]\[J_2=-\iint_{\Sigma_1}2(1-y^2)dzdx=16\iint_{\Sigma_1}dzdx=32\pi
\]\[I=J_1+J_2=34\pi
\]
\[I=\iint_{\Sigma+\Sigma_1}+\iint_{\Sigma_1^-}=J_1+J_2
\]
\[J_1=3\iiint_Vdxdydz=3\cdot \frac{\pi}{3}(3\cdot 2\sqrt{3}-\sqrt{3})\cdot 3=15\sqrt{3}\pi
\]
\[J_2=\iint_{\Sigma_1^-}xdydz+ydzdx+zdxdy=\iint_{\Sigma_1^-}(\frac{x+y+z}{\sqrt{3}})dS=2\sqrt{3}\cdot 9\pi=18\sqrt{3}\pi
\]\[I=J_1+J_2=33\sqrt{3}
\]