问题描述
对于一有向图,若需要保证任选一点即可走到其它所有点,询问最少需要加多少条有向边
结论
对于一有向图,若其对应DAG中入度为0的点数为$p$,出度为0的点数为$q$,则答案数为$max(p, q)$
证明: $p \leq q$ 和 $p \geq q$的证明过程类似,这里仅说明$p \leq q$的证明过程
- 当$p == 1$,即1个起点,2个及以上终点时。可知起点就是一个链式关系中最前面的节点,从起点可到达链式关系中的任一点,因此从每一个终点向起点连接一条边即可实现强连通,答案为$q$
- 当$p > 1$时,$q \geq p > 1$,即2个及以上起点,2个及以上终点,且满足$终点数>=起点数$ 此时需要考虑一种特殊情况,$p == q == 2$。设两个起点分别为$p_1, p_2$,两个终点分别为$q_1, q_2$,则一定存在一种方案使得$p_1$可以走到$q_1$, $p_2$可以走到$q_2$,证明采用反证法,假设$q_2$无法从$p_1$和$p_2$走到,但由于此图是一DAG,对于$q_2$,不停找其前驱节点最终一定可以找到某个节点是走向$q_2$的,且该节点入度为$0$,即是一个起点,这与所有起点都无法到达$q_2$的假设相矛盾 如果添加一条$q_1 -> q_2$的边,则问题转化为$p == 1$的情况,还需要添加$1$条边,故答案为$2$ 综上所述, 一种可行的操作方法为将$p > 1$的情况转化为$p == 1$,具体方法为将$(p - 1)$个终点连向起点,这一步需要添加$(p - 1)$条边 此时起点数为$1$,终点数为$q - (p - 1)$, 还需要添加$q - (p - 1)$条边 综上,答案数为$q - (p - 1) + (p - 1) = q = max(p, q)$
解决思路
由上述结论可知,我们仅需将原图转变为DAG,分别统计入度为$0$和出度为$0$的点数即可 有向图转DAG可采用Tarjan实现
例题解析
题目描述
解题思路 第1问: 假如当前图为有向无环图,那么只需要计算入度为0的点的个数即可 因为对于入度非0的点,我们只需要将软件提供给它的前驱即可,对于它的前驱同理,依次类推,我们仅需要提供给该链式关系中的第一个节点即可,而链式关系中的第一个节点即为入度为0的点,故需要统计的就是入度为0的点的个数
第2问: 对题目描述进行抽象可得目标为计算“有向图转变为强连通图所需的最少加边数”,即为$max(入度为0点数,出度为0点数)$ 将有向图转为强连通图,并分别统计入度和出度分别为0的个数即可
代码实现
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
#include <stack>
using namespace std;
const int N = 110, M = 5000;
int n, m;
int h[N], e[M], ne[M], idx;
stack<int> stk;
int timestamp;
bool in_stk[N];
// tarjan维护值
int dfn[N], low[N];
int id[N], Size[N], scc_cnt;
// 统计入度出度
int din[N], dout[N];
void add(int a, int b)
{
e[idx] = b;
ne[idx] = h[a];
h[a] = idx ++;
}
void tarjan(int u)
{
dfn[u] = low[u] = ++ timestamp;
stk.push(u), in_stk[u] = true;
for (int i = h[u]; ~i; i = ne[i])
{
int j = e[i];
if (!dfn[j])
{
tarjan(j);
low[u] = min(low[u], low[j]);
}
else if (in_stk[j]) low[u] = min(low[u], dfn[j]);
}
if (dfn[u] == low[u])
{
++ scc_cnt;
int y;
do {
y = stk.top(); stk.pop();
in_stk[y] = false;
id[y] = scc_cnt;
++ Size[scc_cnt];
}while (y != u);
}
}
int main()
{
memset(h, -1, sizeof h);
cin >> n;
for (int i = 1; i <= n; ++ i)
{
int y;
while (cin >> y, y) add(i, y);
}
for (int i = 1; i <= n; ++ i)
if (!dfn[i])
tarjan(i);
// 统计入度为0的点数p,出度为0的点数q
int p = 0, q = 0;
for (int i = 1; i <= n; ++ i)
for (int j = h[i]; ~j; j = ne[j])
{
int t = e[j];
int a = id[i], b = id[t];
if (a != b)
{
++ dout[a];
++ din[b];
}
}
for (int i = 1; i <= scc_cnt; ++ i)
{
if (!din[i]) ++ p;
if (!dout[i]) ++ q;
}
cout << p << endl;
if (scc_cnt == 1) cout << 0 << endl; // 仅有一个scc,不需要连边,如果按照max(p, q)输出是错误的,需要特判
else cout << max(p, q) << endl;
return 0;
}
标签:有向图,int,入度,stk,low,加边数,include,转强,起点
From: https://blog.51cto.com/u_14882565/7910244