首页 > 编程语言 >数据结构代码整理_基于邻接表存储结构的有向图的实现(C++)

数据结构代码整理_基于邻接表存储结构的有向图的实现(C++)

时间:2023-06-20 10:04:10浏览次数:61  
标签:有向图 temp int graph void C++ key Graph 数据结构



目录

  • Requirements
  • Debugging Environment
  • Chat
  • Code
  • 1.graph.h
  • 2.test.cpp


Requirements

       基于邻接表存储结构实现有向图的典型操作(构造、析构、增加顶点、删除顶点、增加弧、删除弧,查找一个 顶点、判空、判满、图中顶点个数、邻接表中指定顶点的第一个邻接顶点、深度优先遍历、广度优先遍历),测试和调试程序。

Debugging Environment

visual studio 2019

Chat

之前的图论问题中对于图的存储基本上都是用的链式向前星,刚好趁着这次课程实验了解一下邻接表,可能是第一次接触邻接表还不是很熟悉的缘故吧,总觉得邻接表好像比链式向前星麻烦一点。因为只是随手写的,可能会有一些小bug,在graph.h后面还有个test.cpp文件,那个是老师是给的测试文档,我跑了一下都还ok,但是你们在使用的时候如果发现了什么不对的地方,记得评论提醒我哈。

Code

(代码仅供参考)

1.graph.h

#ifndef GRAPH_H_INCLUDED
#define GRAPH_H_INCLUDED
/* This header file contains the declarations and prototype functions for the graph ADT
class. It also contains a debugging function to print a vertex.
*/
#include<iostream>
#include<map>
#include<queue>
#include<stack>
using namespace std;
#define DEBUG 1 //On includes printVertex
template <class TYPE> struct Vertex;//存储每个顶点的信息
template <class TYPE> struct Arc;//先简单声明,存储弧的信息
template <class TYPE> struct Vertex //存图中各顶点
{
	Vertex<TYPE>* pNextVertex;//指向下一个头顶点
	TYPE data;//顶点有效信息
	int inDegree;//入度
	int outDegree;//出度
	short processed;//标识该顶点被处理的程度或状态
	Arc<TYPE>* pArc; //指向第一条弧,这里用到了 Arc,所以在前面要先简单声明下
}; // Vertex
template <class TYPE> struct Arc //存图中各弧
{
	Vertex<TYPE>* destination;//注意这里是指针,指向弧头顶点
	Arc<TYPE>* pNextArc;//指向下一条弧
}; // Arc
template <class TYPE, class KTYPE> //KTYPE 表示各顶点中关键字的类型(关键字用于查询)
class Graph
{
private:
	int count;
	Vertex<TYPE>* first;
public:
	Graph(void);
	~Graph(void);
	int insertVertex(TYPE dataIn);//插入顶点,数据域为 dataIn
	int deleteVertex(KTYPE dltKey);//删除顶点,其数据域中关键字为 dltKey
	int insertArc(KTYPE fromKey, KTYPE toKey);//插入弧,该弧从 fromKey 指向 toKey
	int deleteArc(KTYPE fromKey, KTYPE toKey);//删除弧,该弧从 fromKey 指向 toKey
	int retrieveVertex(KTYPE key, TYPE& DataOut);//查关键字为 key 的顶点,数据存入 DataOut
	int firstArc(KTYPE key, TYPE& DataOut);//查关键字为 key 的顶点所指的首弧,数据存 DataOut
	bool emptyGraph(void);//判图是否为空
	bool graphFull(void);//判图是否为满
	int graphCount(void); //返回图顶点个数
	void depthFirst(void (*process)(TYPE dataProc));//深度优先遍历
	void breadthFirst(void (*process)(TYPE dataProc)); // 广度优先遍历
#ifdef DEBUG
		// The following function is used only for debugging
		void printVertex(KTYPE key);//该方法仅在调试时使用,输出该顶点关键字
#endif
}; // Graph
template <class TYPE, class KTYPE>
Graph<TYPE, KTYPE>::Graph()
{
	count = 0;
	first = nullptr;
}
template <class TYPE, class KTYPE>
Graph<TYPE, KTYPE>::~Graph(void)
{
	Vertex<TYPE>* p = first;
	while (p) {
		Vertex<TYPE>* q = p;
		p = p->pNextVertex;
		delete q;
	}
}
template <class TYPE, class KTYPE>
int Graph<TYPE, KTYPE>::insertVertex(TYPE dataIn)//插入顶点,数据域为 dataIn
{
	Vertex<TYPE>* p = new Vertex<TYPE>;
	p->data = dataIn;
	p->inDegree = 0;
	p->outDegree = 0;
	p->pArc = nullptr;
	p->pNextVertex = nullptr;
	count++;
	Vertex<TYPE>* temp = first;
	if (!first)
		first = p;
	else {
		while (temp->pNextVertex) {
			temp = temp->pNextVertex;
		}
		temp->pNextVertex = p;
	}
	return 1;
}
template <class TYPE, class KTYPE>
int Graph<TYPE, KTYPE>::deleteVertex(KTYPE dltKey)//删除顶点,其数据域中关键字为 dltKey
{
	Vertex<TYPE>* p = first, * q = nullptr;
	while (p) {
		if (p->data.key == dltKey) {//删除节点表中的节点
			if (p->inDegree||p->outDegree)
				return -1;
			Vertex<TYPE>* temp = p;
			p = p->pNextVertex;
			if (temp == first)//头删
				first = p;
			else
				q->pNextVertex = p;
			delete temp;
			count--;
			return 1;
		}
		q = p;
		p = p->pNextVertex;
	}
	return -2;
}
template <class TYPE, class KTYPE>
int Graph<TYPE, KTYPE>::insertArc(KTYPE fromKey, KTYPE toKey)//插入弧,该弧从 fromKey 指向 toKey
{
	int flag1 = 0, flag2 = 0;
	Vertex<TYPE>* p = first, * q1 = nullptr, * q2 = nullptr;
	while (p) {
		if (p->data.key == fromKey) {
			q1 = p;
			++flag1;
		}
		if (p->data.key == toKey) {
			q2 = p;
			++flag2;
		}
		p = p->pNextVertex;
	}
	if (!flag1)
		return -2;
	if (!flag2)
		return -3;
	Arc<TYPE>* a = new Arc<TYPE>;
	a->destination = q2;
	a->pNextArc = nullptr;
	Arc<TYPE>* temp = q1->pArc;
	if (!temp)
		q1->pArc = a;
	else {
		while (temp->pNextArc)
			temp = temp->pNextArc;
		temp->pNextArc = a;
	}
	a->destination->inDegree += 1;
	q1->outDegree += 1;
	return 1;
}
template <class TYPE, class KTYPE>
int Graph<TYPE, KTYPE>::deleteArc(KTYPE fromKey, KTYPE toKey)//删除弧,该弧从 fromKey 指向 toKey
{
	int flag1 = 0, flag2 = 0;
	Vertex<TYPE>* p = first, * q1 = nullptr;
	while (p) {
		if (p->data.key == fromKey) {
			q1 = p;
			++flag1;
		}
		p = p->pNextVertex;
	}
	if (!flag1)
		return -2;
	Arc<TYPE>* q2 = q1->pArc, * temp = nullptr;
	while (q2) {
		if (q2->destination->data.key == toKey)
		{
			if (temp)
				temp->pNextArc = q2->pNextArc;
			else
				q1->pArc = q2->pNextArc;
			q2->destination->inDegree -= 1;
			q1->outDegree -= 1;
			delete q2;
			return 1;
		}
		temp = q2;
		q2 = q2->pNextArc;
	}
	return -3;
}
template <class TYPE, class KTYPE>
int Graph<TYPE, KTYPE>::retrieveVertex(KTYPE key, TYPE& DataOut)//查关键字为 key 的顶点,数据存入 DataOut
{
	Vertex<TYPE>* p = first;
	while(p){
		if (p->data.key == key) {
			DataOut = p->data;
			return 1;
		}
		p = p->pNextVertex;
	}
	return 0;
}
template <class TYPE, class KTYPE>
int Graph<TYPE, KTYPE>::firstArc(KTYPE key, TYPE& DataOut)//查关键字为 key 的顶点所指的首弧,数据存 DataOut
{
	Vertex<TYPE>* p = first;
	while (p) {
		if (p->data.key == key) {
			if (p->pArc) {
				DataOut = p->pArc->destination->data;
				return 1;
			}
			return -1;
		}
		p = p->pNextVertex;
	}
	return -2;
}	
template <class TYPE, class KTYPE>
bool Graph<TYPE, KTYPE>::emptyGraph(void)//判图是否为空
{
	return count == 0;
}
template <class TYPE, class KTYPE>
bool Graph<TYPE, KTYPE>::graphFull(void)//判图是否为满
{
	return false;
}
template <class TYPE, class KTYPE>
int Graph<TYPE, KTYPE>::graphCount(void) //返回图顶点个数
{
	return count;
}
template <class TYPE, class KTYPE>
void Graph<TYPE, KTYPE>::depthFirst(void (*process)(TYPE dataProc))//深度优先遍历
{
	if (first) {
		Vertex<TYPE>* p = first;
		int cnt = 0;
		stack<Arc<TYPE>* >st;
		while (p) {//标记置位
			p->processed = 0;
			p = p->pNextVertex;
		}
		p = first;
		while (!st.empty() || cnt == 0) {
			Vertex<TYPE>* ptemp = first;
			if (cnt != 0) {
				ptemp = st.top()->destination;
				st.pop();
			}
			process(ptemp->data);
			Arc<TYPE>* temp = ptemp->pArc;
			while (temp) {
				if (!temp->destination->processed) { //遇到当前弧表的未处理弧
					st.push(temp);
					temp->destination->processed = 1;
				}
				temp = temp->pNextArc;
			}
			cnt++;
		}
	}
}
template <class TYPE, class KTYPE>
void Graph<TYPE, KTYPE>::breadthFirst(void (*process)(TYPE dataProc)) // 广度优先遍历
{
	if (first) {
		Vertex<TYPE>* p = first;
		Arc<TYPE>* a = p->pArc;
		queue<Vertex<TYPE>* > q;
		while (p) {//初始化
			p->processed = 0;
			p = p->pNextVertex;
		}
		if (first)
			q.push(first);
		while (!q.empty()) {
			Vertex<TYPE>* ptemp = q.front();
			q.pop();
			if (!ptemp->processed) {
				process(ptemp->data);
				ptemp->processed = 1;
			}
			Arc<TYPE>* temp = ptemp->pArc;
			while (temp) {
				if (!temp->destination->processed)
				{
					process(temp->destination->data);
					temp->destination->processed = 1;
					q.push(temp->destination);
				}
				temp = temp->pNextArc;
			}
		}
	}
}
template <class TYPE, class KTYPE>
void Graph<TYPE, KTYPE>::printVertex(KTYPE key)//该方法仅在调试时使用,输出该顶点关键字
{
	Vertex<TYPE>* p = first;
	while (p) {
		if (p->data.key == key) {
			cout << "Adjacency list for " << key;
			cout << " " << "inDegree " << p->inDegree << "--outDegree " << p->outDegree << endl;
			Arc<TYPE>* temp = p->pArc;
			while (temp) {
				cout << " " << temp->destination->data.key;
				temp = temp->pNextArc;
			}
			break;
		}
		p = p->pNextVertex;
	}
}

#endif // GRAPH_H_INCLUDED

2.test.cpp

/* This program tests the graph ADT */
#include <iostream>
#include <iomanip>
#include <ctype.h>
#include <stdlib.h>
#include <limits.h>
#include "graph.h"
using namespace std;
struct DATA
{
	int key;
	bool operator<(const DATA& p)const {
		return key < p.key;
	}
};
//Prototype Functions
void doInsertVertex(Graph<DATA, int>& graph);
void doInsertArc(Graph<DATA, int>& graph);
void doDeleteVertex(Graph<DATA, int>& graph);
void doDeleteArc(Graph<DATA, int>& graph);
void search(Graph<DATA, int>& graph);
void doRetrieveVertex(Graph<DATA, int>& graph);
void doFirstArc(Graph<DATA, int>& graph);
void testUtilties(Graph<DATA, int>& graph);
void buildAGraph(Graph<DATA, int>& graph);
char doMenu(void);
void process(DATA data);
int main(void)
{ // Local Declarations
	char option;
	int key;
	DATA datum;
	Graph<DATA, int> graph;
	// Statements
	cout << "Start Explore Graphs\n";
	while ((option = doMenu()) != 'q')
	{
		switch (option)
		{
		case 'i': doInsertVertex(graph); break;
		case 'd': doDeleteVertex(graph); break;
		case 'a': doInsertArc(graph); break;
		case 'b': doDeleteArc(graph); break;
		case 'p': cout << "Enter vertex key: ";
			cin >> key;
			graph.printVertex(key);
			break;
		case 'r': doRetrieveVertex(graph); break;
		case 's': doFirstArc(graph); break;
		case 't': datum.key = INT_MIN;
				process(datum);//Set count
			cout << "\nBegin depth first traversal\n";
			graph.depthFirst(process);
			cout << "\nEnd depth first traversal\n";
			cout << "\nBegin breadth first traversal\n";
			process(datum); //Set count
			graph.breadthFirst(process);
			cout << "\nEnd breadth first traversal\n";
			break;
		case 'x': testUtilties(graph); break;
		case '!': buildAGraph(graph); break;
		default: cout << "\a\a\nInvalid option. Please try again.\n";
		} // switch
	} // while
	return 0;
	cout << "End Explore Graphs\n";
} // main
/* ============================= doMenu =============================
This function prints a menu and reads the user selection.
Pre Nothing.
Post option returned.
*/
char doMenu(void)
{ // Local Declarations
	char option;
	// Statements
	cout << "\n============ Menu =============\n";
	cout << " i : Insert new item \n";
	cout << " d : Delete a vertex \n";
	cout << " a : Insert an arc \n";
	cout << " b : Delete an arc \n";
	cout << " p : Print Vertex Adjacency \n";
	cout << " r : Retrieve Vertex \n";
	cout << " s : Retrieve First Arc \n";
	cout << " t : Traverse graph \n";
	cout << " x : Test ADT utilities \n";
	cout << " q : Quit \n\n";
	cout << "=============================== \n";
	cout << "Please enter your choice: ";
	cin >> option;
	option = tolower(option);
	return option;
} // doMenu
/* =================== doRetrieveVertex ===================
This function locates a vertex in the graph.
Pre graph exists.
Post vertex retrieved and printed.
*/
void doRetrieveVertex(Graph<DATA, int>& graph)
{ // Local Declarations
	int key;
	int success;
	DATA dataOut;
		// Statements
		cout << "Please enter key to be found: ";
	cin >> key;
	success = graph.retrieveVertex(key, dataOut);
	if (success == 1)
		cout << "\nKey found. Contains " << dataOut.key << endl;
	else
		cout << "\n\aKey " << key << " not found\n";
	return;
} // doRetrieveVertex
/* =================== doFirstArc ===================
This function locates the first arc of a vertex.
Pre graph exists.
Post vertex first arc retrieved and printed.
*/
void doFirstArc(Graph<DATA, int>& graph)
{ // Local Declarations
	int key;
	int success;
	DATA dataOut;
	// Statements
	cout << "Please enter key of first arc: ";
	cin >> key;
	success = graph.firstArc(key, dataOut);
	if (success == 1)
		cout << "\nFirst arc of " << key << " contains " << dataOut.key;
	else if (success == -2)
		cout << "\n\aVertex Key " << key << " not found\n";
	else
		cout << key << " has no arcs\n";
	return;
} // doFirstArc
/* ===================== doInsertVertex =====================
This function gets input from the user and passes it to
vertex insert vertex function.
Pre graph exists.
Post vertex has been inserted.
*/
void doInsertVertex(Graph<DATA, int>& graph)
{ // Prototype Statements
// Local Declarations
	DATA newData;
	int success;
	// Statements
	cout << "\nPlease enter interger to be inserted: ";
	cin >> newData.key;
	success = graph.insertVertex(newData);
	if (success)
		cout << newData.key << " inserted\n";
	else
		cout << newData.key << " NOT inserted\a\n";
	return;
} // doInsertVertex
/* ======================= doInsertArc =======================
This function gets input from the user and passes it to
arc insert vertex function.
Pre graph exists.
Post arc has been inserted.
*/
void doInsertArc(Graph<DATA, int>& graph)
{
	// Prototype Statements
	// Local Declarations
	int fromKey;
	int toKey;
	int success;
	// Statements
	cout << "\nPlease enter from key: ";
	cin >> fromKey;
	cout << "\nPlease enter to key: ";
	cin >> toKey;
	success = graph.insertArc(fromKey, toKey);
	switch (success)
	{
	case 1: cout << "arc " << fromKey << "-to-" << toKey << " inserted\n";
		break;
	case -1: cout << "Overflow: arc NOT inserted\a\n";
		break;
	case -2: cout << "From Key " << fromKey << " Error\a\n";
		break;
	case -3: cout << "To Key " << toKey << " Error\a\n";
		break;
	default: cout << "Unknown error " << success << " in doInsertArc\n";
		cout << "ABORTING 100\a\a\n";
		exit(100);
	} // switch
	return;
} // doInsertArc
/* ======================= doDeleteArc =======================
This function gets input from the user and passes it to
the delete arc function.
Pre graph exists.
Post arc has been deleted.
*/
void doDeleteArc(Graph<DATA, int>& graph)
{ // Local Declarations
	int fromKey;
	int toKey;
	int success;
	// Statements
	cout << "\nPlease enter from key: ";
	cin >> fromKey;
	cout << "\nPlease enter to key: ";
	cin >> toKey;
		success = graph.deleteArc(fromKey, toKey);
	switch (success)
	{
	case 1: cout << "arc " << fromKey << "-to-" << toKey << " deleted\n";
		break;
	case -2: cout << "From Key " << fromKey << " Error\a\n";
		break;
	case -3: cout << "To Key " << toKey << " Error\a\n";
		break;
	default: cout << "Unknown error " << success << "in doDeleteArc\n";
		cout << "ABORTING 101\a\a\n";
		exit(101);
	} // switch
	return;
} // doDeleteArc
/* ========================== doDeleteVertex ==========================
This function deletes a node from the graph. It asks the user for the
key of the node to be deleted and then removes it from the graph.
Pre graph must be initialized. Null graph is OK.
Post The node is deleted and its space recylced
-or- An error message is printed.
*/
void doDeleteVertex(Graph<DATA, int>& graph)
{ // Prototype Statements
// Local Declarations
	int dltKey;
	int success;
	DATA dltData;
	// Statements
	cout << "\nPlease enter integer to be deleted: ";
	cin >> dltKey;
	graph.retrieveVertex(dltKey, dltData);//即将被删的元素读出来到 dltDat 中
	success = graph.deleteVertex(dltKey);//真正删除被删的元素
	switch (success)
	{
	case 1: cout << dltKey << " deleted\n";
		break;
	case -1: cout << dltKey << "'s degree not zero\a\n";
		break;
	case -2: cout << dltKey << "'s key not found\a\n";
		break;
	default: cout << "UNKNOWN ERROR 101 in delete\a\n";
		cout << "ABORTING\a";
		exit(101);
	} // switch
	return;
} // doDeleteVertex
/* =================== process ==================
This function "processes" a graph by printing a
sequential number and the vertex data.
Pre dataPtr is pointer to user data structure
Post Data (integer) printed.
*/
void process(DATA data)
{ // Local Declarations
	static int count = 1;
		// Statements
		if (data.key == INT_MIN)
			count = 1;
		else
			cout << "Vertex #" << setw(3) << count++
			<< " contains: " << setw(3) << data.key << endl;
	return;
} // process
/* =================== testUtilties ==================
This function tests the ADT utilities by calling
each in turn and printing their results.
Pre graph has been created.
Post Results printed.
*/
void testUtilties(Graph<DATA, int>& graph)
{
	cout << "Graph contains " << graph.graphCount() << " nodes\n";
	if (graph.emptyGraph())
		cout << "The graph IS empty\n";
	else
		cout << "The graph IS NOT empty\n";
	if (graph.graphFull())
		cout << "The graph IS full\a\n";
	else
		cout << "The graph IS NOT full\n";
	return;
} // testUtilities
/* =================== buildAGraph ==================
This function builds the graph in Figure 12-1(a)
using 1 for A, 2 for B, etc.
Pre graph has been created.
Post graph built.
*/
void buildAGraph(Graph<DATA, int>& graph)
{
	// Local Declarations
	DATA data;
	int i;
	int success;
	int fromKey;
	int toKey;
	// Statements
	for (i = 1; i <= 6; i++)
	{
		data.key = i;
		success = graph.insertVertex(data);
		if (!success)
			cout << "Insert error in buildAGraph\a\a\n", exit(100);
	} // for
	// Vertices built. Now build arcs
	fromKey = 1;
	toKey = 2;
	success = graph.insertArc(fromKey, toKey);
	fromKey = 2;
	toKey = 3;
	success = graph.insertArc(fromKey, toKey);
	fromKey = 3;
	toKey = 4;
	success = graph.insertArc(fromKey, toKey);
	fromKey = 3;
	toKey = 5;
	success = graph.insertArc(fromKey, toKey);
	fromKey = 5;
	toKey = 4;
	success = graph.insertArc(fromKey, toKey);
	fromKey = 5;
	toKey = 6;
	success = graph.insertArc(fromKey, toKey);
	fromKey = 2;
	toKey = 5;
	success = graph.insertArc(fromKey, toKey);
	if (!success)
		cout << "Error adding arcs in buildAGraph\a\a\n", exit(100);
	return;
}


标签:有向图,temp,int,graph,void,C++,key,Graph,数据结构
From: https://blog.51cto.com/u_16165815/6520498

相关文章

  • CCF_201912-2 回收站选址(C++_暴力_枚举)
    思路本来想用dfs来着,有垃圾的地方就标一后来看到数的大小为,数量却只有就果断暴力了…Code#include<bits/stdc++.h>//暴力枚举usingnamespacestd;typedeflonglongll;llx[1010],y[1010],num[1010],score[1010],ans[10];intmain(){ intn; cin>>n; for(inti=......
  • PTA_乙级_1002 写出这个数(C++_模拟)
    读入一个正整数n,计算其各位数字之和,用汉语拼音写出和的每一位数字。输入格式:每个测试输入包含1个测试用例,即给出自然数的值。这里保证小于。输出格式:在一行内输出n的各位数字之和的每一位,拼音数字间有1空格,但一行中最后一个拼音数字后没有空格。输入样例:1234567890987654......
  • 呼叫中心的离散事件模拟(C++_模拟)
    题目       模拟网上书店的电话接待台接电话(离散事件)的过程。用户在打电话咨询时,先输入自己的标识(如姓名或会员号),然后进入排队等待被接听电话。xauat服务人员会根据该用户在书店已购买书籍的累计消费情况对拨入的电话进行排序。累计消费超过3000元的为1类用户,最先得......
  • 逆波兰式求值(C++_模拟)
    题目       将中缀表达式翻译成后缀表达式(逆波兰表达式)时,可以去掉中缀表达式中出现的括号,简化表达式。如中缀表达式“(2+3)6”被转成后缀表达式“23+6”后,可以借助于栈对表达式求值,完成运算。规则大致如下:       遇到操作数,则入栈;       遇到二元运算符,则......
  • P1203 [USACO1.1]坏掉的项链Broken Necklace(C++_模拟_暴力枚举_优化)
    题目描述你有一条由n个红色的,白色的,或蓝色的珠子组成的项链,珠子是随意安排的。这里是n=29的两个例子:第一和第二个珠子在图片中已经被作记号。图片A中的项链可以用下面的字符串表示:brbrrrbbbrrrrrbrrbbrbbbbrrrrb假如你要在一些点打破项链,展开成一条直线,然后从一端开始收集......
  • P1582 倒水(C++_数论_进制)
    题目描述一天,CC买了N个容量可以认为是无限大的瓶子,开始时每个瓶子里有1升水。接着~~CC发现瓶子实在太多了,于是他决定保留不超过K个瓶子。每次他选择两个当前含水量相同的瓶子,把一个瓶子的水全部倒进另一个里,然后把空瓶丢弃。(不能丢弃有水的瓶子)显然在某些情况下CC无法达到目标,比......
  • P1478 陶陶摘苹果(升级版)(C++_贪心)
    题目描述又是一年秋季时,陶陶家的苹果树结了n个果子。陶陶又跑去摘苹果,这次他有一个a公分的椅子。当他手够不着时,他会站到椅子上再试试。这次与NOIp2005普及组第一题不同的是:陶陶之前搬凳子,力气只剩下s了。当然,每次摘苹果时都要用一定的力气。陶陶想知道在s<0s<0之前最多......
  • CCF_201612-4 压缩编码(C++_区间DP)
    问题描述       给定一段文字,已知单词a1,a2,…,an出现的频率分别t1,t2,…,tn。可以用01串给这些单词编码,即将每个单词与一个01串对应,使得任何一个单词的编码(对应的01串)不是另一个单词编码的前缀,这种编码称为前缀码。使用前缀码编码一段文字是指将这段文字中的每......
  • PAT_Advanced Level_1078 Hashing (25分)(C++_Hush_平方探测法)
    Thetaskofthisproblemissimple:insertasequenceofdistinctpositiveintegersintoahashtable,andoutputthepositionsoftheinputnumbers.ThehashfunctionisdefinedtobeH(key)=key%TSizewhereTSizeisthemaximumsizeofthehashtable.Qu......
  • 数据结构代码整理_队列Queue(C++)
    所谓队列,就是先进先出规则的实现。基于链表实现main.cpp#include<iostream>#include"Queue.h"usingnamespacestd;intmain(){ Queueq; q.append(1); q.append(2); Queue_entrya; q.retrieve(a); cout<<a<<""<<q.empty(); return......